淡江大學 109 學年度日間部寒假轉學生招生考試試題

系別: 物理學系三年級

科目:應用數學 29- 29

考試日期:1月18日(星期一)第2節

本試題共 4 大題, 1 頁

請盡量詳細寫出各解題步驟及計算過程,否則不予計分。

1. (25%) Please find (1)
$$\frac{\partial}{\partial y} \left[\sin(x^2 + y^2) e^{-(x+y)^2} \right]$$
; (2) $\int_{0}^{\infty} u e^{-u} \left(1 + e^{-u} \right) du$.

- 2. Given a matrix $A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & -3 & 0 \\ -1 & 0 & -2 \end{pmatrix}$,
 - (1) (20%) find its eigenvalues and normalized eigenvectors;
 - (2) (5%) show that the corresponding eigenvectors are mutually orthogonal.
- 3. The differential equation is given by $\frac{d^2 f}{dt^2} 4 \frac{df}{dt} + 3f = 0$.
 - (1) (18%) Find the general solution of the equation.
 - (2) (7%) When f(0)=0 and $\frac{df}{dt}=1$ at t=0, determine the constants in the general solution of the equation.
- 4. (25%) A vector fields is given by $V=(xy^2+z)\mathbf{i}+(x^2y+2)\mathbf{j}+x\mathbf{k}$, where \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors in Cartesian coordinate system.
 - (1) (5%) Calculate $\nabla \cdot \mathbf{V}$ and $\nabla \times \mathbf{V}$.
 - (2) (5%) Is V a conservative field? Why?
 - (3) (8%) Evaluate directly the line integrals $I = \int_{0}^{\infty} \mathbf{V} \cdot d\mathbf{r}$ along the path given by x=t, y=2t and

 $z=4t^2$, where A and B are the points (1, 2, 4) and (3, 6, 36). Hint: at A, $t_A=1$ and at B, $t_B=3$.

(4) (7%) Find the potential function of the conservative field, i.e., find a scalar function ϕ to make $V = \nabla \phi$.