淡江大學 109 學年度日間部寒假轉學生招生考試試題

系別: 數學系資統組三年級

科目:機率與統計學 -

考試日期:1月18日(星期一)第1節

本試題共 / 大題,

頁

- 1.(10%) If P(A) = 0.3, $P(A \mid B) = 0.3$ and P(B) = 0.5. Compute $P(B \mid A)$ and $P(A \mid B^c)$ where B^c is the complement of B.
- **2.(10%)** Let X_1, X_2, \dots, X_n be a random sample of size n with p.d.f. $f(x) = \theta x^{\theta-1}, 0 < \infty$ $x < 1, 0 < \theta < \infty$. Find the mle (maximum likelihood estimate) of θ .
- 3.(20%) The life time T (in years) of a light bulb has the exponential distribution f(t) = $\frac{1}{2}e^{-t/2}, \ t>0.$
 - (i) What are the mean (E(T)) and variance (Var(T)) of the life time of the light bulb.
 - (ii) If the light bulb has been used for one year, what is the probability that this bulb can be used at least for one more year $(P(T \ge 2 \mid T \ge 1))$.
- **4.(15%)** Let X and Y have the joint p.m.f. $f(x,y) = \frac{x+y}{21}, x = 1, 2, 3, y = 1, 2$. Compute $E(X \mid Y = 2)$ and $Var(X \mid Y = 2)$.
- 5.(15%) Consider the simple linear regression $Y_i = \alpha + \beta X_i + \epsilon_i$, $i = 1, \dots, n$, where ϵ_i are i.i.d. $N(0, \sigma^2)$, let $\hat{\alpha}$, $\hat{\beta}$ be the least squares estimates of α and β .
- (i) Prove that $\hat{\beta} = S_{XY}/S_{XX}$, $\hat{\alpha} = \bar{Y} \hat{\beta}\bar{X}$, where $S_{XY} = \sum_{i=1}^{n} [(Y_i \bar{Y})(X_i \bar{X})]$, and $S_{XX} = \sum_{i=1}^{n} (X_i \bar{X})^2$.
- (ii) Show that $\hat{\beta}$ is unbiased.
- 6.(10%) Suppose that W_1, \dots, W_{10} are iid continuous random variables. Denote the order statistics by $W_{(1)} < W_{(2)} < \cdots < W_{(10)}$. Let ξ denote the 60% percentile of the distribution, that is $P(W_i \leq \xi) = 0.6$. What is the confidence level of the confidence interval $(W_{(5)}, W_{(8)})$ for estimating ξ .
- 7.(20%) Let X_1, X_2 and X_3 be i.i.d. random variables from $N(\mu, 12)$. Consider the test that has null hypothesis $H_0: \mu = 0$ v.s. alternative hypothesis $H_1: \mu = 1$.
- i). Construct a critical region C so that the significance level is 0.05.
- ii). Find the power of the above test.
- iii). Find a confidence lower bound $L(X_1, X_2, X_3)$ such that $P(L(X_1, X_2, X_3) \leq \mu) = 0.95$.
- v). Compute the p-value if we observe $X_1 = 1, X_2 = 0.96$ and $X_3 = 1.96$.