淡江大學 109 學年度日間部轉學生招生考試試題

系別: 物理系三年級

科目:應用數學

41-

考試日期:7月22日(星期三)第2節

本試題共 4 大題, 1 頁

請盡量詳細寫出各解題步驟及計算過程,否則不予計分。

- 1. (25%) Given a matrix $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 8 & 6 \\ 0 & 6 & 3 \end{pmatrix}$,
 - (1) (20%) find its eigenvalues and normalized eigenvectors.
 - (2) (5%) show that the corresponding eigenvectors are clearly mutually orthogonal.
- 2. (25%) The differential equation is given by $\frac{d^2 f}{dt^2} + 5 \frac{df}{dt} + 6 f = 24e^{-6t}$.
 - (1) (18%) Find the general solution of the equation.
 - (2) (7%) When f=0 and $\frac{df}{dt} = 3$ at t=0, find the solution of the equation.
- 3. (15%) Let $f(x) = \begin{cases} x & -\pi < x < 0 \\ 0 & 0 \le x < \pi \end{cases}$, expand f(x) as a Fourier Series.

Hint:
$$\int x \cos(nx) dx = \frac{1}{\pi n^2} \left[\cos(nx) + nx \sin(nx) \right] \int x \sin(nx) dx = \frac{1}{\pi n^2} \left[-nx \cos(nx) + \sin(nx) \right]$$

- 4. (35%) Two vector fields are given by $\mathbf{a} = (x+y)\mathbf{i} + (y-x)\mathbf{j} + (y+z^2)\mathbf{k}$ and $\mathbf{b} = (xy^2+z)\mathbf{i} + (x^2y+2)\mathbf{j} + x\mathbf{k}$, where \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors in Cartesian coordinate system, A and B are the points (1, 2, 4) and (3, 6, 36).
 - (a) (5%) Calculate $\nabla \cdot \mathbf{a}$, $\nabla \cdot \mathbf{b}$, $\nabla \times \mathbf{a}$ and $\nabla \times \mathbf{b}$.
 - (b) (5%) Which one (a and b) is a conservative field? Why?
 - (c) (15%) Evaluate directly the line integrals $I = \int_{A}^{B} \mathbf{b} \cdot d\mathbf{r}$ along the following two paths
 - (i) C_1 given by x=t, y=2t and $z=4t^2$. Hint: at A, $t_A=1$ and at B, $t_B=3$.
 - (ii) C_2 given by $x=1+0.5t^2$, y=2+2t and z=4+16t. Hint: at A, $t_A=0$ and at B, $t_B=2$.
 - (d) (10%) Find the potential function of the conservative field, i.e., find a scalar function ϕ to make **a** or $\mathbf{b} = \nabla \phi$.