淡江大學 109 學年度日間部轉學生招生考試試題

系別: 化學工程與材料工程學系二年級 科目:普通化學

5-

考試日期:7月22日(星期三)第1節

本試題共 6 大題, 1 頁

1.	Name the following species in English or write their molecular formulas. (15%)
	For examples: H_2SO_4 : Sulfuric acid; Water: H_2O
	CO ₂ :(a); NaCl:(b); Ethanol:(c);
	Hypochlorous acid: (d) ; Gallium arsenide: (e)
2.	Briefly answer the following questions. (25%)
	(a) Describe the Pauli exclusion principle.
	(b) The electron configuration of magnesium can be expressed as $[Ne]3s^2$. Write the similar expression for the electron configuration of copper.
	(c) Define the dipole moment of a molecule.
	(d) Draw the Lewis structure for O ₃ . Also calculate the respective formal charge for each of the three oxygen atoms.
	 (e) Differentiate between the reaction quotient and the equilibrium constant for the following chemical reaction: A + 2B ⇒ 3C + 4D, where A, B, C, and D are chemicals dissolved in an aqueous solution.
3.	On a phase diagram of a pure substance, draw the triple point, the normal melting point, and
	the supercritical fluid region, and indicate a pathway for the sublimation process. (15%)
4.	(a) In chemical kinetics, the Arrhenius equation can correlate k , the rate constant, E_a , the
	activation energy, and T , the Kelvin temperature. Write the equation and define the other terms in the equation. (5%)
	(b) According to the Arrhenius equation, design an experiment to measure the activation energy
	of the following chemical reaction: $3H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{3(g)}$.
	Include the principle and experimental procedure in your answer. (10%)
_	
5.	(a) Balance the following redox reaction. (6%) $\Gamma_{(aq)} + H^{\dagger}_{(aq)} + CIO^{\dagger}_{(aq)} \rightleftharpoons I_{3}^{\dagger}_{(aq)} + C\Gamma_{(aq)} + H_{2}O_{(l)}$
	(b) Knowing that the reaction in (a) proceeds to the right spontaneously, indicate the strongest
	reductant and the strongest oxidant in (a). (6%)
	(c) Write the balanced cathode reaction. (3%)
6.	(a) Calculate the pH value of a buffer solution consisting of 0.50 M HOAc ($K_a = 1.80 \times 10^{-5}$) and
	0.25 M NaOAc. (10%)
	(b) Propose a method to enhance the buffer capacity of the buffer in (a) without changing its pH value. (5%)