淡江大學八十八學平度日間部轉學生招生考試試題

系别:化學工程學系三年級

科目:質能均衡

本試題共享

- 30% 1. A well known reaction to generate hydrogen from steam is the so called water gas shift reaction: CO + $\rm H_2O \rightleftharpoons \rm CO_2 + \rm H_2$. If the gaseous feed to a reactor consists of 30 moles of CO, 12 moles of $\rm CO_2$, and 35 moles of steam per hour at 800 °C, and 18 moles of $\rm H_2$ are produced per hour, calculate
 - (a) the limiting reactant.
 - (b) the excess reactant.
 - (c) the fraction conversion of steam to H2 .
 - (d) the degree of completion of the reaction.
 - (e) the kg of H2 yielded per kg of steam fed.
 - (f) the moles of CO_2 produced by the reaction per mole of CO fed.
- 20% 2. A gas with the following composition is burned with 50% excess air in a furnace. What is the composition of the flue gas by percent?

(air: 79% N₂, 21% O₂)

- 20% 3. The vapor pressure of hexane at -20 °C is 14.1 mm Hg absolute. Dry air at this temperature is saturated with the vapor under a total pressure of 760 mm Hg. What is the percent excess air for combustion? (Dry air: 79% N2, 21% 02) (Assume ideal gas.)
- 30% 4. A gas is burned with 300% excess air with the gas and air entering the combustion chamber at 25°C. What is the theoretical adiabatic flame temperature achieved in °C? See Fig. I for details.

Fig. I

(air: 79%N2, 21%0s)

Data:	ΔH_{f}^{o} (25°C) (cal/g mc	
	CH ₄ CO H ₂ O CO ₂	- 17889 - 26416 - 57798 -94052

	Enthalpy (cal/q mol)			
	25 °C	500 °C	1000 ℃	
CO2	217.9	5340	11846	
CO ₂ H ₂ O	200.3	4254	9210	
°2	175	3745	7482	
N ₂	174	3569	7916	