淡江大學 108 學年度日間部寒假轉學生招生考試試題

系別：數學系三年級

科目：微積分

考試日期：1月13日（星期一）第2節 本試题共 4 大題， 1 頁

＊所有計算題皆要有計算過程，否則不予計分。

1．（10 分）True or False．Explain your reason briefly．
（a）There exists a continuous function which is not differentiable and there exists a differentiable function which is not continuous．
（b）Denote $a<b$ two real numbers．If f is continuous in the interval (a, b) then $|f|$ is continuous in (a, b) ．
（c）Denote $a<b$ two real numbers．$f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function．If $f^{\prime}\left(x_{0}\right)=0$ for some $x_{0} \in(a, b)$ ，then f attains local extreme value at $x=x_{0}$ ．
（d）Suppose $|f|$ is a Riemann integrable function over $[a, b]$ then f is also Riemann integrable over $[a, b]$ ，where $a<b$ are two real numbers．
（e）Denote $D \subset \mathbb{R}^{2}$ a open set．$f(x, y)$ is a function defined in D ．Suppose $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist at $\left(x_{0}, y_{0}\right)$ ，then $f(x, y)$ is continuous at $\left(x_{0}, y_{0}\right)$ ．

2．（30 分）Find the values．
（a） $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+5}-x\right)$ ，
（b） $\lim _{x \rightarrow 0} \frac{\tan (3 x) \sin (2 x)(1-\cos x)}{x^{4}}$ ，
（c） $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{5 n+i}$ ，
（d） $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right)$ ，
（e）$y(x)=x^{3 x}, y^{\prime}(2)=$ ？
3．（35 分）Evaluate the integrals
（a） $\int_{0}^{1} \frac{x-4}{x^{2}-5 x+6} d x$
（b） $\int_{0}^{\pi / 2} \cos (x) e^{2 x} d x$ ．
（c） $\int_{0}^{\infty} \dot{x}^{2} e^{-x} d x$ ．
（d） $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$ ．
（e） $\iint_{\mathbb{R}^{2}} \mathrm{e}^{-x^{2}-y^{2}} d A$ ．
4．（a）（8 分）Use the definition to prove $\lim _{x \rightarrow 2} x^{4}=16$ ．
（b）Denote f a continuous function on $[0,1]$ ．Show that
i．（7 分） $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} x^{n} f(x) d x\right)=0$ ．
ii．（10 分） $\lim _{n \rightarrow \infty}\left(\int_{0}^{1}|f(x)|^{n} d x\right)^{1 / n}=\max _{0 \leq x \leq 1}|f(x)|$ ．

