系別：物理學系三年級
考試日期：7月24日（星期三）第2節
請寫下計算過程或思考步驟
$1(8 \%+8 \%)$ Consider an attractive force field，given by $\vec{F}=-k \vec{r}$ ，observing the Hooke＇s law．Find the work done against the force，i．e．，evaluating $-\int_{(1,2,3)}^{(2,1,3)} \vec{F} \cdot d \vec{r}$ ，when going from $(1,2,3)$ to $(2,1,3)$ via the following paths：
（a）along the straight line connecting $(1,2,3)$ and $(2,1,3)$ ．
（b）along a circle of radius $\sqrt{5}$ and centered at $(0,0,3)$ ．
$2(8 \%+8 \%)$ Consider an ordinary differential equation（ODE）given by $x \frac{d y}{d x}-y+x=0$ ．
（a）Find the integration factor $\mu(x, y)$ to turn this ODE into an exact differential equation．［Hint：Try $\mu(x, y)=x^{\alpha} y^{\beta}$ ．］
（b）Solve this differential equation．
3 （ $10 \%+10 \%+10 \%$ ）
（a）Obtain the general solution of the homogeneous ODE $y^{\prime \prime}-2 y^{\prime}+y=0$ ．
（b）Find a particular solution of the inhomogeneous ODE $y^{\prime \prime-2 y^{\prime}+y=x e^{x}}$ ．
（c）Find the solution of $y^{\prime \prime}-2 y^{\prime}+y=x e^{x}$ satisfying the initial conditions： $y(x=0)=0$ and $y^{\prime}(x=0)=1$.
$4(4 \%+12 \%+6 \%+16 \%)$ Consider a periodic function of period 2 ，defined as $f(x)=|x|$ in the range $-1 \leq x \leq 1$ ．
（a）Sketch the function $f(x)$ ．
（b）Find the sine／cosine Fourier series for the function $f(x)$ ．
（c）Using the Fourier expansion obtained for $f(x)$ in（b），find the sine／cosine Fourier series for the function $g(x)$ with the period of 2 defined as 0 for $-1 \leq x<0$ and 1 for $0 \leq x<1$ ．
（d）Use the Fourier series in（b）and（c）to show that $S_{1}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$ and $S_{2}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}=\frac{\pi}{4}$.

