淡江大學 108 學年度日間部轉學生招生考試試題

系別
數學學系資料科學與數理統計組三年級

科目：機率與統計學

考試日期：7月24日（星期三）第1節
本試題共 8 大題， 2 頁
1．（10\％）Let $P(A)=0.3$ and $P(B)=0.6$ Find
（a）$P\left(A \cup B^{c}\right)$ if A and B are disjoint．（5\％）
（b）$P\left(A \mid B^{c}\right)$ if A and B are independent．（5\％）

2．（ 12% ）Let X be a continuous random variable with p．d．f．

$$
f(x)=\left\{\begin{array}{cc}
3 / 10, & -1 \leq x<0 \\
k x, & 0 \leq x<1 \\
0, & \text { ow }
\end{array}\right.
$$

（a）Find $\mathrm{k}=$ ？$\quad(5 \%)$
（b）Find the pdf of $Y=X^{2} \quad$（7\％）

3．（12\％）Let X be a discrete random variable with $\operatorname{pmf} f(x)=(1 / 2)^{x} I_{\{1,2, \ldots\}}$
（a ）Find $P(X>2 \mid \mathrm{X}<4) \quad(5 \%)$
（b）Find $E(X) \quad(7 \%)$
4．（8\％）Let $X_{1}, X_{2}, \ldots, X_{n}, X_{n+1}$ be random sample of size $\mathrm{n}+1, n>1$ ，fro，a distribution that is $N\left(\mu, \sigma^{2}\right)$ ．Let $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ and $S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1)$ ．Find the constant c so that the statistic $c\left(\bar{X}-X_{n+1}\right) / S$ has a t－distribution．

5．（17\％）Let X_{1}, X_{2} are id with the pdf uniform $(0, \theta)$ and let $\mathrm{R}=\left|X_{2}-X_{1}\right|$ ．
（a）Show that the pdf of R is

$$
f(t ; \theta)=\left\{\begin{array}{cc}
\frac{2}{\theta^{2}}(\theta-t) & \text { for } 0<t<\theta \\
0 & \text { eleswhere }
\end{array}\right.
$$

（b）Use the result in part（a）to find c so that $\mathrm{R}<\theta<c R$ is a 81% confidence interval for θ

6．（ 10% ）Let \bar{X} be the mean of a random sample of size n from a $\operatorname{Normal}(\mu, 16)$ distribution．Find the smallest sample size n such that $(\bar{X}-1, \quad \bar{X}+1)$ is a 0.9 level confidence interval for μ ． Given $P(Z<1.28)=0.90, P(Z<1.645)=0.95, P(Z<1.96)=0.975$ ，where Z is $\mathrm{N}(0,1)$ random variable．

淡江大學 108 學年度日間部轉學生招生考試試題

系別：
數學學系資料科學與數理統計組
三年級
科目：機率與統計學
$22-2$
考試日期：7月24日（星期三）第1節 本試題共 8 大題， 2 頁
7．（17\％）An observation Z takes one of four values according to one of the three distributions shown in the following table of probabilities：

	θ_{0}	θ_{1}	θ_{2}
z_{1}	0.2	0.5	0.3
z_{2}	0.3	0.1	0
z_{3}	0.1	0.2	0.4
z_{4}	0.4	0.2	0.3

Consider testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ or θ_{2}
（a ）Find the likelihood ratio statistic $\Lambda .(5 \%)$
（b ）Determine all critical regions for Z defined by rules of the form $\Lambda<1$（4\％）
（c ）Find type I and type II errors when $\theta=\theta_{2}$ for test in（b）．（ 8% ）

8．（14\％）Let $X_{1}, X_{2}, \ldots, X_{n} n>1$ and $Y_{1}, Y_{2}, \ldots, Y_{m} m>1$ be two random sample from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ ，respectively．Let $\bar{X}=\sum_{i=1}^{n} X_{i} / n, S_{X X}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \bar{Y}=\sum_{i=1}^{m} Y_{i} / m$ and $S_{Y Y}=\sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}$
（a）Suppose $\mathrm{n}=26, \mathrm{~m}=18, S_{X X}=900$ and $S_{Y Y}=170$ ．Use these data to test $H_{0}: \sigma_{1}=\sigma_{2}$ v．s． $H_{1}: \sigma_{1} \neq \sigma_{2}$（with significance level 0.05 ）．Given．
$F_{0.025,26,18}=0.43, F_{0.05,26,18}=0.50, F_{0.95,26,18}=2.13, F_{0.975,26,18}=2.48$
$F_{0.025,25,17}=0.42, F_{0.05,25,17}=0.49, F_{0.95,25,17}=2.18, F_{0.975,25,17}=2.55$
（b）Suppose $\sigma_{1}=\sigma_{2} . \mathrm{n}=10, \mathrm{~m}=8, \bar{X}=120, \bar{Y}=116, S_{X X}=56$ and $S_{Y Y}=40$ ．Use these data to test $H_{0}: \mu_{1}=\mu_{2}$ v．s．$H_{1}: \mu_{1}>\mu_{2}$（with significance level 0.05 ）．Given．
$T_{0.025,18}=-2.10, T_{0.05,18}=-1.73$ ，
$T_{0.025,17}=-2.11, T_{0.05,17}=-1.74$ ，
$T_{0.025,16}=-2.12, T_{0.05,16}=-1.75$ ，

