

淡江大學 108 學年度日間部轉學生招生考試試題 系別: 數學學系資料科學與數理統計組 三年級 科目:機率與統計學 23-) 考試日期:7月24日(星期三) 第1節 大題, Z 頁 本試題共 🍸 1.(10%) Let P(A) = 0.3 and P(B) = 0.6 Find 本試題雙面印刷 (a) $P(A \cup B^c)$ if A and B are disjoint. (5%) (b) $P(A | B^c)$ if A and B are independent. (5%) 2.(12%) Let X be a continuous random variable with p.d.f. $f(x) = \begin{cases} 3/10, \ -1 \le x < 0; \\ kx, \ 0 \le x < 1; \\ 0, \ o.w. \end{cases}$ (a) Find k=? (5%) (b) Find the pdf of $Y = X^2$. (7%)3.(12%) Let X be a discrete random variable with pmf $f(x) = (1/2)^x I_{\{1,2,...\}}$ (a) Find P(X > 2 | X < 4) (5%) (b) Find E(X)(7%)4. (8%) Let $X_1, X_2, ..., X_n, X_{n+1}$ be random sample of size n+1, n > 1, fro, a distribution that is $N(\mu, \sigma^2)$. Let $\overline{X} = \sum_{i=1}^n X_i / n$ and $S^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)$. Find the constant c so that the statistic $c(\overline{X} - X_{n+1})/S$ has a *t*-distribution. 5.(17%)Let X_1, X_2 are iid with the pdf uniform(0, θ) and let $R=|X_2 - X_1|$. (a) Show that the pdf of R is $f(t;\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - t) & \text{for } 0 < t < \theta \\ 0 & \text{eleswhere} \end{cases}$ (10%) (b) Use the result in part (a) to find c so that $R < \theta < cR$ is a 81% confidence interval for θ 6.(10%) Let \overline{X} be the mean of a random sample of size n from a Normal (μ ,16) distribution. Find the smallest sample size n such that $(\overline{X} - 1, \overline{X} + 1)$ is a 0.9 level confidence interval for μ . Given P(Z < 1.28) = 0.90, P(Z < 1.645) = 0.95, P(Z < 1.96) = 0.975, where Z is N(0,1) random variable.

淡江大學 108 學	年度	日間部	轉學	生招	生考註	式試題	
系別:數學學系資料科學; 三年級	與數理約	统計組	科目	:機率與	統計學	23	-2
考試日期:7月24日(星期三) 第			本	試題共 8	大题,	2頁	
7.(17%)An observation Z takes on	e of four	values accor	ding to c	one of the th	ree distribu	utions shown	
in the following table of proba	bilities:						
		$\theta_0 = \theta_1$	θ_2				
		0.2 0.5	0.3				
	<i>Z</i> ₂	0.3 0.1	0				
	Z ₃	0.1 0.2	0.4				
	Z4	0.4 0.2	·····				
Consider testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ or θ_2							
(a) Find the likelihood ratio statistic Λ .(5%)							
(b)Determine all critical regions for Z defined by rules of the form $\Lambda < 1$ (4%)							
(c)Find type I and type II error	rs when	$\theta = \theta_2$ for te	st in (b).	(8%)			
8 $(1/0/)$ I at $Y = Y = Y = Y$	and V V	V m	1 he tru	o random se	mole from	$N(\mu, \sigma^2)$	
8. (14%)Let X_1, X_2, \dots, X_n $n > 1$ and Y_1, Y_2, \dots, Y_m $m > 1$ be two random sample from $N(\mu_1, \sigma_1^2)$							
and $N(\mu_2, \sigma_2^2)$, respectively. Let $\overline{X} = \sum_{i=1}^n X_i / n$, $S_{XX} = \sum_{i=1}^n (X_i - \overline{X})^2$, $\overline{Y} = \sum_{i=1}^m Y_i / m$ and							
$S_{YY} = \sum_{i=1}^{m} (Y_i - \overline{Y})^2$							
(a) Suppose n=26, m=18, S_{XX} =900 and S_{YY} =170. Use these data to test $H_0: \sigma_1 = \sigma_2$ v.s.							
$H_1: \sigma_1 \neq \sigma_2$ (with significance level 0.05). Given.							
$F_{0.025, 26, 18} = 0.43, F_{0.05, 26, 18} = 0.50, F_{0.95, 26, 18} = 2.13, F_{0.975, 26, 18} = 2.48$ $F_{0.025, 25, 17} = 0.42, F_{0.05, 25, 17} = 0.49, F_{0.95, 25, 17} = 2.18, F_{0.975, 25, 17} = 2.55$							
$F_{0.025, 25, 17} = 0.42, F_{0.05, 25, 17}$	7 = 0.49, F	70.95, 25, 17 = 2.18	5 , F 0.975, 2	5,17 = 2.55			
(b) Suppose $\sigma_1 = \sigma_2$. n=10,	m=8, \bar{X}	$\overline{Y} = 120, \overline{Y} =$	116, S_{v}	$_{v}$ =56 and	$S_{vv} = 40 . U$	se these data	
to test $H_0: \mu_1 = \mu_2$ v.s. $H_1: \mu_1 > \mu_2$ (with significance level 0.05). Given.							
$T_{0.025, 18} = -2.10, T_{0.05, 18} = -1.73,$							
$T_{0.025, 17} = -2.11, T_{0.05, 17} = -1.74,$							
$T_{0.025, 16} = -2.12, T_{0.05, 16} =$	-1.75,						
1							

•

•

