淡江大學108學年度碩士班招生考試試題

系別：數學學系
科目：線性代數
考試日期：3月10日（星期日）第2節
本試題共 6 大題，共 1 頁
1．Let $A=\left[\begin{array}{lllll}2 & 3 & 1 & 4 & 5 \\ 3 & 2 & 4 & 5 & 3 \\ 2 & 1 & 3 & 3 & 1 \\ 3 & 1 & 5 & 4 & 0\end{array}\right]$ ．
（1）(8%) Find the reduced row echelon form of A ，rank of A ，and nullity of A ．
（2）（12\％）Find bases of the row space，column space，and null space of A respectively．
2．Let $A=\left[\begin{array}{rrr}4 & 0 & -3 \\ -1 & 5 & 9 \\ 0 & -2 & -3\end{array}\right]$ ．Define the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ ．
（1）(8%) Find all eigenvalues and eigenvectors of T ．
（2）（4\％）Find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$ ．
3．(12%) Define an inner product $\langle\cdot, \cdot\rangle$ on the real vector space \mathbb{R}^{3} by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+2 x_{3} y_{3}, \text { for all } \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \text { in } \mathbb{R}^{3} .
$$

Use Gram－Schmidt process to construct an orthogonal basis from the basis

$$
\beta=\{(1,1,2),(-2,0,3),(2,10,2)\}
$$

of \mathbb{R}^{3} ．
4．(16%) Let $A=\left[\begin{array}{cccc}-2 & 0 & 4 & 6 \\ 0 & -2 & -2 & -3 \\ 0 & 0 & -14 & -16 \\ 0 & 0 & 9 & 10\end{array}\right]$ ．Find matrices P and J such that $J=P^{-1} A P$ is the Jordan canonical form of A ．

5．Let A be an $m \times n$ matrix and B be an $n \times m$ matrix．
（1）(10%) Prove that $\operatorname{det}\left(I_{m}+A B\right)=\operatorname{det}\left(I_{n}+B A\right)$ ．
（2）（10\％）Prove that $A B$ and $B A$ have the same nonzero eigenvalues（counting algebraic multiplicity）．

6．Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix with $a_{i j} \in \mathbb{C}$ for all $1 \leq i \leq n$ and $1 \leq j \leq n$ ．Define $r_{i}=\sum_{\substack{1 \leq j \leq n \\ j \neq i}}\left|a_{i j}\right|$ and $D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\}$ for all $1 \leq i \leq n$ ．Prove the following statements．
（1）(15%)（Gershgorin circle theorem）Every eigenvalue of A lies in D_{i} for some $1 \leq i \leq n$ ．
（2）（5\％）If $\left|a_{i i}\right|>r_{i}$ for all $1 \leq i \leq n$ ，then A is invertible．

