淡江大學 107 學年度日間部寒假轉學生招生考試試題

系
別：
科目：機率與統計學

考試日期：1月13日（星期日）第1節 本試題共 6 大題， 2 頁
1．Let A, B, C be three events，$P(A)=0.5, P(B \mid A)=0.2, P\left(A^{c} \mid B^{c}\right)=0.2$ ，
（1）find $P(A \cap B)=$ ？（5\％）
（2）find $P(B)=$ ？（5\％）
2．Let $f(x, y)=c(x+2 y),(x, y)=(1,1),(1,2),(2,1),(2,2)$ be the joint $p m f$ of two random variables X and Y of the discrete type．Find
（1）$c=$ ？（5\％）
（2）covariance of X and Y ．（5\％）
（3） $\mathrm{E}(Y \mid X=2)(5 \%)$

3．Let $f(x ; \theta)=(1 / \theta) x^{(1-\theta) / \theta}, 0<x<1,0<\theta<\infty$ ．Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample of size n from this distribution．
（1）Find the maximum likelihood estimator of θ ．（5\％）
（2）Let $Y=-\ln X_{1}$ ，find the pdf of Y ．（5\％）
（3）Find the variance of the maximum likelihood estimator of θ ．（10\％）

3．Let $X_{1}, X_{2}, \ldots, X_{n}$ be random sample from uniform distribution on the interval $(\theta-1, \theta+1)$ ．
（1）Find $\mathrm{E}\left(X_{1}\right)$ and $\mathrm{E}\left(X_{1}^{2}\right)$（5\％）
（2）Find the method of moments estimator for θ（5\％）

4．Let X equal the tarsus length for a male grackle．Assume that the distribution of X is $N\left(\mu, 2.2^{2}\right)$ ．Find the sample size n that is needed so that we are 95% confident that the maximum error of the estimate of μ is 0.4 ．（ 10% ）

5．Assume that SAT mathematics scores of students who attend small liberal arts colleges are $N\left(\mu, 90^{2}\right)$ ．We shall test $H_{0}: \mu=530$ against the alternative hypothesis $H_{1}: \mu<530$ ．Given a random sample of size $\mathrm{n}=36$ SAT mathematics scores，let the critical region be defined by $C=\{\bar{x} \mid \bar{x} \leq 510.77\}$ ，where \bar{x} is the observed mean of the sample．
（a）How is the power function， $\mathrm{K}(\mu)$ ，defined for this test？（ 5% ）
（b ）What is the significance level of this test？（5\％）
（c ）Sketch the graph of the power function．（5\％）
（d）What is the p value corresponding to $\bar{x}=83.41$（5\％）

淡江大學107學年度日間部寒假轉學生招生考試試題

系
別：數學系資統組三年級
科目：機率與統計學

考試日期：1月13日（星期日）第1節本試題共 6 大題， 2 頁
6．Let X, Y denote the tarsus lengths of male and female grackles，respectively．Assume that X is $N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and Y is $N\left(\mu_{y}, \sigma_{y}^{2}\right)$ ．Given that $\mathrm{n}=25, \bar{x}=33.8, s_{x}^{2}=4.88, \mathrm{~m}=29, \bar{y}=31.66$, and $s_{y}^{2}=5.81$ ，test
（a）$H_{0}: \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}=1$ against a two side alternative with $\alpha=0.02$ ．（7\％）
（b）$H_{0}: \mu_{x}=\mu_{y}$ against $H_{1}: \mu_{x}>\mu_{y}$ with $\alpha=0.01$ ．（8\％）

Note：Suppose $\mathrm{Z} \sim N(0,1)$ and $F_{r_{1}, r_{2}} \sim \mathrm{~F}$ distribution with r_{1} and r_{2} degrees of freedom． then $\mathrm{P}(|Z| \leq 1.96)=0.95, \mathrm{P}(|Z| \leq 1.645)=0.90, \mathrm{P}(\mathrm{Z} \leq 2.326)=0.99$

$$
\mathrm{P}\left(F_{28,24} \leq 0.4\right)=0.01, \text { and } \mathrm{P}\left(F_{28,24} \geq 2.6\right)=0.01
$$

