科目：線性代數

考試日期：1月13日（星期日）第1節本試題共 7 大題， 1 頁

Please show all your work to receive full credit．

1．（ 10 pts ）Write down a basis for the space of all 3×3 real symmetric matrices．
2．（ 15 pts ）Let $\mathrm{C}(-\infty, \infty)$ be the space of all continuous functions defined on \mathbb{R} ． Determine if the following sets of vectors in $\mathrm{C}(-\infty, \infty)$ are linearly independent．
（a）$\left\{(x-2)^{2}, x^{2}-4 x, 3\right\}$
（b）$\left\{1, x, e^{x}\right\}$

3．（ 15 pts ）Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(x, y)=$ $(5 x+2 y,-x+2 y)$ ．Find a basis for \mathbb{R}^{2} relative to which the matrix representation for T is diagonal．

4．（15 pts）Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 5 \\ 2 & 1 & 1 & 2 \\ -5 & 2 & 5 & 7\end{array}\right]$ and let \mathbf{b} be a 3×1 matrix．
（a）If $A \mathrm{x}=\mathrm{b}$ has a solution，determine the rank of the matrix $[A \mid \mathrm{b}]$ ．
（b）If $A \mathrm{x}=\mathrm{b}$ has no solution，determine the rank of the matrix $[A \mid \mathrm{b}]$ ．
Please justify your answer．

5．（ 15 pts ）Let W be the one dimensional subspace spanned by the vector $(1,2,3,0)$ in \mathbb{R}^{4} ．Find a basis for W^{\perp}（the orthogonal complement of W ）．

6．（ 15 pts ）Suppose $M_{2 \times 2}$ is the space of all 2×2 matrices with real entries．Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the linear transformation given by $T(A)=A^{T}$（where A^{T} is the transpose of A ）．Find the characteristic polynomial of T ．

7．（15 pts）Suppose A and B are both 3×3 matrices with real entries．
（a）Show that if A and B are similar matrices，then A^{n} and B^{n} are also similar matrices for any $n \in \mathbb{N}$ ．
（b）Give an example showing that if A^{2} and B^{2} are similar，A and B need not be similar．

