淡江大學 107 學年度日	間部寒假轉學生招生考試試題	1
糸別: 數學系數學組三年級	科目:線性代數	
考試日期:1月13日(星期日)第1節	本試題共 7 大題, 1 頁	7

Please show all your work to receive full credit.

1. (10 pts) Write down a basis for the space of all 3×3 real symmetric matrices.

2. (15 pts) Let $C(-\infty,\infty)$ be the space of all continuous functions defined on \mathbb{R} . Determine if the following sets of vectors in $C(-\infty, \infty)$ are linearly independent. (a) $\{(x-2)^2, x^2-4x, 3\}$ (b) $\{1, x, e^x\}$

3. (15 pts) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by T(x,y) =(5x+2y, -x+2y). Find a basis for \mathbb{R}^2 relative to which the matrix representation for T is diagonal.

4. (15 pts) Let $A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 1 & 1 & 2 \\ -5 & 2 & 5 & 7 \end{bmatrix}$ and let **b** be a 3 × 1 matrix.

(a) If $A\mathbf{x} = \mathbf{b}$ has a solution, determine the rank of the matrix $[A \mid \mathbf{b}]$. (b) If $A\mathbf{x} = \mathbf{b}$ has no solution, determine the rank of the matrix $[A \mid \mathbf{b}]$. Please justify your answer.

5. (15 pts) Let W be the one dimensional subspace spanned by the vector (1, 2, 3, 0)in \mathbb{R}^4 . Find a basis for W^{\perp} (the orthogonal complement of W).

6. (15 pts) Suppose $M_{2\times 2}$ is the space of all 2×2 matrices with real entries. Let $T: M_{2\times 2} \to M_{2\times 2}$ be the linear transformation given by $T(A) = A^T$ (where A^T is the transpose of A). Find the characteristic polynomial of T.

7. (15 pts) Suppose A and B are both 3×3 matrices with real entries.

(a) Show that if A and B are similar matrices, then A^n and B^n are also similar matrices for any $n \in \mathbb{N}$.

(b) Give an example showing that if A^2 and B^2 are similar, A and B need not be similar.

9