淡江大學 107 學年度日間部寒假轉學生招生考試試題

系別：水環系環工組二年級
 科目：化 學

考試日期：1月13日（星期日）第1節
本試題共 3 大題， 2 頁

第一部份：選擇題（單選，每題3分，30分）
1．The $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ bond angles in PCl_{5} are：
（A） 72° only
（B） 109.5° only
（C） 90° and 120°
（D） 90° and 180°
（E） $90^{\circ}, 120^{\circ}$ ，and 180°

2．A decrease in the reaction temperature causes a decrease in the rate of reaction due to the decrease in \qquad ．
（A）the reaction enthalpy
（B）the concentrations of reactants
（C）the activation energy of the forward reaction．
（D）the activation energy of the reverse reaction．
（E）the traction of collisions with total kinetic energy larger than activation energy．

3．For the central atoms of the following molecules，which does not display sp^{3} hybrid orbital？
（A） SiH_{4}
（B） $\mathrm{H}_{3} \mathrm{O}^{+}$
（C） NH_{3}
（D） $\mathrm{CH}_{3}{ }^{+}$
（E） $\mathrm{PO}_{4}{ }^{3-}$

4．Which of the following species is a polar molecule？
（A） CCl_{4}
（B） SO_{3}
（C） CO_{2}
（D） NF_{3}
（E） XeF_{4}

5．The acid strengths for hydrogen halides HX change as X varies within the halogen group of the periodic table．Which of the following factors dominates in affecting the acid strength？
（A）Polarity
（B）Solubility
（C）Bond strength
（D）Electron withdrawing effects
（E）Percent ionic character of $\mathrm{H}-\mathrm{X}$ bond

6．Which ion is planar？
（A） NH_{4}^{+}
（B） $\mathrm{SO}_{3}{ }^{2-}$
（C） $\mathrm{CO}_{3}{ }^{2-}$
（D） $\mathrm{ClO}_{3}{ }^{-}$
（E） PBr_{3}

7．Which element will display an unusually large jump in ionization energy values between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ ionization energies？
（A） Na
（B） Mg
（C） Al
（D） Si
（E）P

8．In condensation polymerization，a common by－product is：
（A）Alcohol
（B）Water
（C）Ethylene
（D）Aldehyde
（E）Hydrogen

系別：水環系環工組二年級
考試日期：1月13日（星期日）第1節

科目：化 學
本試題共 3 大題， 2 頁

9．Which of the following molecules contains the shortest carbon－carbon bond？
（A） $\mathrm{C}_{2} \mathrm{H}_{2}$
（B） $\mathrm{C}_{2} \mathrm{H}_{4}$
（C） $\mathrm{C}_{2} \mathrm{H}_{6}$
（D） $\mathrm{C}_{2} \mathrm{Cl}_{4}$
（E） $\mathrm{C}_{6} \mathrm{H}_{6}$

10．Balance the following redox reaction in basic solution：

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{MnO}_{2}+\mathrm{CO}_{3}^{2-}
$$

What is the molar ratio of MnO_{4}^{-}to $\mathrm{CO}_{3}{ }^{2-}$ in the balanced equation？
（A） $1 / 3$
（B） $1 / 2$
（C） 1
（D） 2
（E） 3

第二部份：填充題（每個空格 3 分，共 15 分）
1．（a）\sim（e）

Element（i？English）	Symbol	Atomic number	Electron configuration
(a)	O	8	$(\mathrm{~b})$
Sodium	Na	11	$[\mathrm{Ne}] 3 s^{1}$
Chromium	Cr	24	(c)
Lead	（d）	(e)	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$

第三部份：計算問答題（共55分）

1．Name the quantum numbers，n, ℓ ，and m_{ℓ} ，and describe their respective physical meanings．（15\％）

2．S represents the solubility of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ ．Please derive the expression of \boldsymbol{S} in terms of the solubility－product constant $\mathbf{K}_{\text {sp }}$ of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ ．

3．When solid AlCl_{3} is dissolved in water，the resulting solution is acidic．Calculate the pH of a $0.012-\mathrm{M} \mathrm{AlCl}_{3}$ solution．The acid dissociation constant of the hydrated Al^{3+} is $1.40 \times 10^{-5} .(10 \%)$

4．In the following reaction， B_{2} is half the bond energy of A_{2} ，and AB is four times the bond energy of B_{2} ．Calculate the bond energy of A_{2} ．
（10\％）

$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB} \quad \Delta \mathrm{H}=-500 \mathrm{~kJ}
$$

5．The $\% \mathrm{NaHCO}_{3}$ in an antacid tablet can be determined by conducting the following reaction at high temperature．

$$
2 \mathrm{NaHCO}_{3(s)} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(s)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}
$$

Ignition of a $0.400-\mathrm{g}$ sample of an antacid tablet containing NaHCO_{3} and nonvolatile impurities yielded a residue weighing 0.260 g ．Calculate the $\% \mathrm{NaHCO}_{3}$ of the sample．The molar masses of $\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{2(\mathrm{~g})}$ ，and $\mathrm{H}_{2} \mathrm{O}$ are $84.0,106.0,44.0$ ，and $18.0 \mathrm{~g} / \mathrm{mol}$ ，respectively．（ 10% ）

