系別：物理系二年級
考試日期：1月13日（星期日）第1節
1．A block1 of mass \boldsymbol{m} is sent sliding with an initial velocity v along another block2 of mass $5 \boldsymbol{m}$ ， starting at one end of the block2（with a disnatce \boldsymbol{d} ）．The coefficient of kinetic friction of block1－block2 and block2－slab is μ_{1} and μ_{2} ，respectively．（ $\mu_{1}=11 \mu_{2}$ ）
（a）Determine the relative acceleration between block1 and block2．［10\％］
（b）Find the minimum value of v such that block 1 could reach the other end of block2．［5\％］
（c）If the whole systems is lift at a horizontal angle θ ，determine the relative acceleration between block 1 and block2．［10\％］

2．A ray is incident on one face of triangular glass prism in air． The incident angle θ_{i} is chosen so that $\theta_{i}=\theta_{f}$ to yield the minimum deviation angle．Show that the index of refraction n of the glass prism is

$$
n=\sin \left(\frac{\psi+\phi}{2}\right) \sin ^{-1}\left(\frac{\phi}{2}\right)
$$

where ψ and ϕ is the deviation and vertex angie，respectiveiy． ［15\％］

3．A parallel－plate capacitor has square plates of edge length \boldsymbol{L} is charged by a current \boldsymbol{i} to produce a uniform electric field \vec{E} which is perpendicular to the plates．（a）What is the displacement current i_{d} between plates．［10\％］（b）What is $d \vec{E} / d t$ of this region？［10\％］（c）What is the i_{d}^{\prime} encircled by the square dashed path of edge length \boldsymbol{d} ．$[\mathbf{1 0 \%}]$（d）What
 is the value of $\oint \vec{B} \cdot d \bar{s}$ around this dashed path？$[\mathbf{1 0 \%}]$

4．A baton is composed of one uniform slender rod（with length \boldsymbol{L} and mass M ）and two uniform solid spheres（with radius \boldsymbol{R} and mass \boldsymbol{m} ）． In order to calculate the moment of inertia（I）of the baton about the axis perpendicular to the center of the stick，please（a）determine the inertia of the individual slender rod $I_{\text {rod }}$ and sphere $I_{\text {sphere }}[\mathbf{1 0 \%}]$ （b）calculate $I_{\text {baton }}$ using parallel－axis theorem and its rotational kinetic
 energy with angular speed $\omega[\mathbf{1 0 \%}]$

