淡江大學107學年度日間部轉學生招生考試試題

系別：數學學系三年級
科目：微積分

考試日期：7月27日（星期五）第2節本試題共 9 大題， 1 頁

請務必附上計算過程，否則不予計分。

1．（ 18 pts ）Find the limit if it exists，or show that the limit does not exist．
（a） $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+3 x+1}-2 x\right)$
（b） $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{3}}{x^{2}+y^{6}}$
（c） $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+i^{2}}$

2．（ 12 pts ）Evaluate the following integrals．
（a） $\int \frac{2 x}{x^{2}-x-6} d x$
（b） $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y$

3．（10 pts）Calculate the indicated derivatives．
（a）Let $f(x, y)=x^{3}+y^{3}-2 x y$ ．Find $\frac{\partial f}{\partial x}$ ．
（b）Let $g(x)=\int_{2 x}^{3 x} e^{t^{2}} d t$ ．Find $g^{\prime}(x)$ ．

4．（10 pts）Determine if the given series is convergent or divergent．Please provide a reason．
（a）$\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\sqrt{n^{2}+1}}$
（b）$\sum_{n=1}^{\infty} \frac{n 5^{n}}{3^{2 n}}$

5．（10 pts）Find an equation of the tangent plane to the surface $x y+y z+x z=3$ at the point $(1,1,1)$ ．

6．（ 10 pts ）Find the absolute maximum and absolute minimum values of $f(x, y)=2 x^{3}+y^{4}$ on the disk $x^{2}+y^{2} \leq 1$ ．

7．（10 pts）Suppose $f(x)$ is a differentiable function．If $f(0)=1$ and $3 \leq f^{\prime}(x) \leq 5$ for all values of x ，show that $4 \leq f(1) \leq 6$ ．

8．（10 pts）Find the Maclaurin series for the function $f(x)=x^{2} \sin 2 x$ ．

9．（ 10 pts ）Sketch the polar curve $r=1+\cos \theta$ and find the area of the region enclosed by the curve．

