淡江大學 107 學年度日間部轉學生招生考試試題
系別: 數學學系三年級 科目:微積分 4-1-1
考試日期:7月27日(星期五) 第2節 本試題共 9 大題: 1 頁
請務必附上計算過程,否則不予計分。
1. (18 pts) Find the limit if it exists, or show that the limit does not exist.
(a)
$$\lim_{z\to\infty} (\sqrt{4x^2 + 3x + 1} - 2x)$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{2\pi y^3}{x^2 + y^2}$
(c) $\lim_{x\to\infty} \sum_{i=1}^{n} \frac{n}{n^2 + i^2}$
2. (12 pts) Evaluate the following integrals.
(a) $\int_{x^2=x-6}^{2} dx$ (b) $\int_{0}^{1} \int_{y}^{1} \frac{4\pi x}{2x} dx dy$
3. (10 pts) Calculate the indicated derivatives.
(a) Let $f(x, y) = x^3 + y^3 - 2xy$. Find $\frac{9}{2x}$.
(b) Let $g(x) = \int_{2x}^{3x} e^{i^2} dt$. Find $g'(x)$.
4. (10 pts) Determine if the given series is convergent or divergent. Please provide a reason.
(a) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^2+1}}$ (b) $\sum_{n=1}^{\infty} \frac{n5^n}{32n}$
5. (10 pts) Find an equation of the tangent plane to the surface $xy + yz + xz = 3$ at the

1-11

彩目

ビヨ

·. v

point (1, 1, 1).

6. (10 pts) Find the absolute maximum and absolute minimum values of $f(x, y) = 2x^3 + y^4$ on the disk $x^2 + y^2 \leq 1$.

7. (10 pts) Suppose f(x) is a differentiable function. If f(0) = 1 and $3 \le f'(x) \le 5$ for all values of x, show that $4 \le f(1) \le 6$.

8. (10 pts) Find the Maclaurin series for the function $f(x) = x^2 \sin 2x$.

9. (10 pts) Sketch the polar curve $r = 1 + \cos \theta$ and find the area of the region enclosed by the curve.

