淡江大學 107 學年度碩士班招生考試試題

考試日期：3月11日（星期日）第2節本試題共 5 大題， 1 頁

1．(10%) Let $X_{(1)}<X_{(2)}<\ldots<X_{(n)}$ be the order statistics of a random sample of size n from an exponential distribution with pdf $f(x)=e^{-x}, 0<x<\infty$ ．What is the distribution of $U=e^{-X_{(r)}}$ ．

2．(20%) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a gamma distribution with known parameter α and unknown parameter $\theta>0$ ．
a）(10%) Show that $Y=\sum_{i=1}^{n} X_{i}$ is a complete and minimal sufficient statistic for θ ．
b）(10%) Let $Z=\frac{\sum_{i=1}^{n} a_{i} X_{i}}{\sum_{i=1}^{n} X_{i}}$ ，where $a_{1}, a_{2}, \ldots, a_{n}$ are not all equal constants．Are Z and Y in（b）independent？Why？

3．(30%) Consider the regression model $Y_{i}=\beta x_{i}+\epsilon_{i}, i=1, \ldots, n$ ，where ϵ_{i} are i．i．d． $N\left(0, \sigma^{2}\right), \sigma^{2}$ unknown．
a）（ 10% ）Obtain the maximum likelihood estimators，$\hat{\beta}$ and $\hat{\sigma}^{2}$ ，of β and σ^{2} under this model．
b）(10%) Find the distribution of $\hat{\beta}$ ．
c）(10%) Find the distribution of $\hat{\sigma}^{2}$ ．
4．（ 10% ）Let X_{1}, \ldots, X_{n} be i．i．d．Bernoulli (θ) where $0 \leq \theta \leq 1 / 2$ ．Find the maximum likelihood estimator of θ ．

5．（20\％）Assume that the weight of cereal in a＂ 12.6 －ounce box＂is $N(\mu, 0.04)$ ．The Food and Drug Association allows only a small percentage of boxes to contain less than 12.6 ounces．We shall test the null hypothesis $H_{0}: \mu=13$ against the alternative hypothesis $H_{1}: \mu<13$ ．
a）（5\％）Use a random sample of $n=100$ to define the test statistic and the critical region that has a significance level of $\alpha=0.05$ ．
b）（ 5% ）If $\bar{x}=12.9608$ ，what is your conclusion？
c）(5%) What is the p－value of this test？
d）(5%) Is this test uniformly most powerful？Why？
6．(10%) Let X be a single observation from the $\operatorname{beta}(\theta, 1)$ pdf．Let $Y=-(\ln X)^{-1}$ ． Evaluate the confidence coefficient of the set $[y / 2, y]$ ．

