淡江大學107學年度碩士班招生考試試題

系別：化學工程與材料工程學系A組 科目：輸送現象與單元操作

考試日期：3月11日（星期日）第1節
本試題共 5 大題， 1 頁

1．Define the following physical quantities and describe their physical significances：
（a）Viscosity for Newtonian fluid［5 pts］
（b）Reynolds number［5 pts］
（c）Sherwood number［5 pts］
（d）Efficiency for a fin［5 pts］
（e）Thermal diffusivity［5 pts］

2．An incompressible fluid involving strong exothermic chemical reactions and moving in a circular tube has density ρ and velocity $\vec{v}=v_{r} \underline{i}_{r}+v_{z} \underline{i}_{z}$ ．Derive the equation of continuity for this fluid．［15 pts］

3．A fluid flows at steady state in a vertical tube under the action of an applied pressure gradient and gravity．The density of the fluid is ρ ．The tube has a length L and a diameter D ．The inlet and outlet pressures of the fluid are P_{o} and P_{L} ，respectively．Develop the momentum equation of this fluid．［15 pts］

4．A double－pipe heat exchanger uses water (W) ，which is available at $40^{\circ} \mathrm{C}$ ，to cool ethylene glycol（ $E G$ ）from 100 to $60^{\circ} \mathrm{C}$ ．The flow rates of water and ethylene glycol are each $0.5 \mathrm{~kg} / \mathrm{s}$ ． （Average specific heat：$\widetilde{c}_{p, E G}=2650 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ and $\widetilde{c}_{p, W}=4178 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ ．）
（a）What are the maximum possible heat rate（ $q_{\text {max }}$ ）and the effectiveness (ε) of the exchanger？ ［10 pts］
（b）Which is preferred，a parallel－flow or counter－flow mode of operation？Show relative calculation to support your answer．［10 pts］

5．Acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ is removed from a $1.5 \mathrm{~mol} \%$ acetone－air mixture by scrubbing with water in packed tower，so that $90 \mathrm{~mol} \%$ of the acetone is removed．The gas mixture enters at 0.035 $\mathrm{kmoles} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ and the water enters at $0.09 \mathrm{kmoles} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ ．The system obeys Henry＇s law and $y_{e}=$ $1.80 x$ ，where y_{e} is the equilibrium molar fraction of acetone in the vapor with a molar fraction x in the liquid．The system operates at 101.3 kPa and $K_{G} a$ may be taken as 1.5×10^{-4} $\mathrm{kmol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s} \cdot \mathrm{kPa}\right)$ ．What should be the height of the tower？［25 pts］

