
淡江大學 107 學年度碩士班招生考試試題
系別:數學學系 科目:微積分
$$5-1$$

考試母期:3月11日(星期日)第1節 本試題共 7大題、1 頁
務必書寫計算過程於答案卷上、否則不予計分。
1. (a) Find $\lim_{x\to 1} (\frac{1}{\ln x - x - 1})$.(6points) (b) Find $\lim_{x\to 0} (\sqrt{x^2 + 1} - x)$. (6points)
2. Evaluate the following integrals
(a) $\int_{0}^{1} \frac{x}{\sqrt{16 + x^2}} dx$. (6points) (b) $\int \sqrt{x} \ln x dx$. (6points)
(c) $\iint_{0} y dA$, where E is the region that lies in the upper half - plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (6points)
(d) $\int_{0}^{x} \int_{1}^{2} e^{x^2} dy dx$. (6points)
3. Determine whether the following series or improper integral is convergent or divergent.(判斷下列瑕積分或級數收斂或發散)
(a) $\int_{1}^{\pi} \frac{1}{1 + x^2} dx$. (6points) (b) $\sum_{x=1}^{\infty} \frac{3n-2}{n^3 - 2n^2 + 11}$. (6points) (c) $\sum_{x=1}^{\infty} \frac{n!}{(2n+1)!}$. (6points)
4. Find $\frac{dy}{dx}$ at x=1 if
(a) $y = \int_{2}^{1/2} \sin^4 t dt$. (8points) (b) $y = (x^{3/4} \sqrt{x^2 + 1})/(3x + 2)^2$. (8points)
5. Prove that if f is differentiable at c, then f is continuous at c. (8points)
6. Find $\frac{dy}{dx}$ if $x^3 + y^3 = 2xy$ and find the tangent to the curve of $x^3 + y^3 = 2xy$ at the point (1, 1). (12points)
7. If f is differentiable on (-x, x) and $y = f(x_0, y)$ show that $\frac{dx}{dx} + \frac{dx}{dx} = 0$ (10points)

