系别:少	:端材料科	學學程二	年級	科目:	普通化學		2	
考試日期:	1月6日(星	期六) 第2 節	ŕ		本試題共 2	大題,3頁		
				示清楚答		****		
** +** +> +	und tong ever / st	10.m +		X.				
弟一部份:	選择題 (1	單選,每題3	分,30分)				
1. A point in	the wave fu	nction where	the amplitu	ide is zero de	efines			
(A) the node (B) the ground state				(C) the	(C) the excited state			
(D) the frequency of radiation				(E) the	(E) the amplitude of the wave function			
2. Which of	the followin _f	g has the sho	rtest bond l	ength?				
(A) O ₂ ²⁻	(B) O ₂ ⁺	(C) O ₂ ⁻	(D) O ₂	(E) Two of t	these have th	e shortest bond	length	
		d with the mo						
(A) LiCl	(B) NaCl	(C) KF	(D) Nat	r (E) Kl				
4 Which of	the followin	g molecules (or ions is nar	amagnetic ir	n its ground s	tate?		
		(C) C ₂	-	-	-			
		(") " 2			-			
5. Which of	the followin	g solid substa	nce can be	described as	very hard, ha	iving a high melt	ing	
point, an	d noncondu	cting unless n	nelted.					
(A) Graph	nite	(B) Diamond	(C) Fe	(D) Pt	(E) NaCl		
		g statement i						
				- ,	scribe an elec			
					ve know its ei			
					cond per cycl	e.		
		ired electrons						
$(\mathbf{F}) \wedge \mathbf{I} \mathbf{m}_2$	tter exhibits	either partic	ulate or way	e properties	exclusively.			
			d to 2.0 mol	es (36 grams	s) of H ₂ O as an	n ice sample at 0	°C. The	
	.2,500 J of er	hergy is adde			<i>y</i> or ri ₂ o us u	rice sumpre ut o		
7. Assume 1				fic heat of lic	-	4.18 J/g °C. The n	nolar	
7. Assume 1 molar he	eat of fusion	is 6.02 kJ/mo	ol. The speci		uid water is 4	-		

(D) Ice and water

.

(E) Water and water vapor

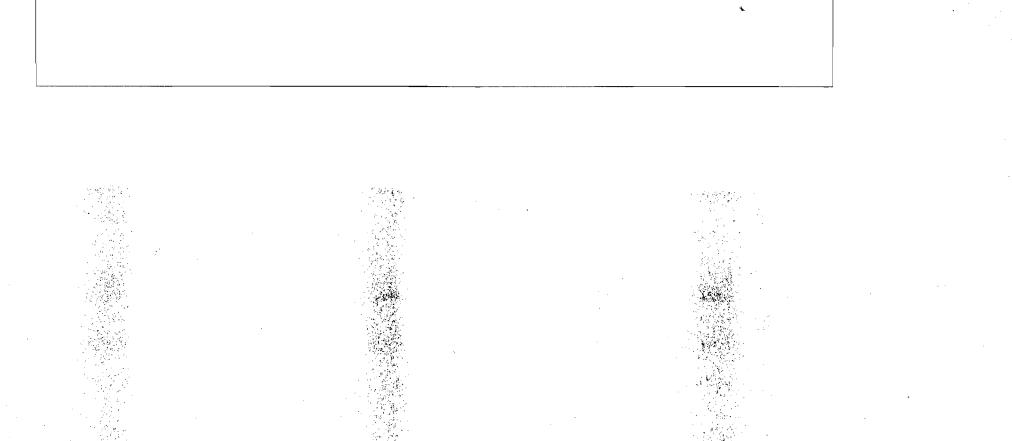
Provine Q

,

٠

•

淡江大學 106 學年度日間部寒假轉學生招生考試試題
系別:尖端材料科學學程二年級 科目:普通化學 21-2
考試日期:1月6日(星期六) 第2節 本試題共 2 大題, 3 頁
8. A certain substance, X, has a triple-point temperature of 25°C at a pressure of 1.0 atm. Which
one of the statements cannot possibly be true?
(A) X can exist as a liquid above 25°C.
(B) X can exist as a solid above 25 °C.
(C) Liquid X can exist as a stable phase at 30°C, 0.5 atm.
(D) Both liquid and solid X have the same vapor pressure at 25°C.
(E) Different crystalline structures of X can be found below 25 °C
9. The energy differences between 4s, 4p, and 4d orbitals are due mainly to
(A) the number of electrons they can hold
(B) their principal quantum number
(C) the Heisenberg uncertainty principle
(D) the penetration effect
(E) Hund's rule
10. Which of the following is the correct order of boiling points for H ₂ O, C ₂ H ₆ O, C ₂ H ₆ , Ar?
(A) $Ar < C_2H_6O < C_2H_6 < H_2O$
(B) $H_2O < C_2H_6O < C_2H_6 < Ar$
(C) Ar < $C_2 H_6$ < $H_2 O$ < $C_2 H_6 O$
(D) $C_2H_6 < Ar < C_2H_6O < H_2O$
(E) $Ar < C_2H_6 < C_2H_6O < H_2O$
第二部份:計算問答題(共70分)
1. Draw the Lewis structures for O ₃ , BeCl ₂ , SO ₄ ²⁻ , and calculate the formal charges of the atoms in each molecule. (20%)
2. The following two aqueous solutions are available for the preparation of a buffer solution. 50 mL of 1.00 M NaOH, 100 mL of 0.50 M HA (Ka = 1.00 x 10 ⁵) Describe how to prepare a buffer solution with maximum buffer capacity, and calculate the pH


3. A salt, MY, crystallizes in a body-centered cubic structure with a Y⁻ anion at each cube corner and

an M^+ cation at the cube center. The radius of Y^- is $r_Y pm$ and that of M^+ is $r_M pm$. Assuming that the Y^- anions touch each other and the M^+ cation at the center, derive the expression of r_M in term of r_Y . (15%)

淡江大學106學年度日間部寒假轉學生招生考試試題 21-3 系別:尖端材料科學學程二年級 科目:普通化學 考試日期:1月6日(星期六) 第2節 本試題共 2 大題, 3 頁 4. The reaction H_2O_2 + $3I^-$ + $2H^+ \rightarrow I_3^-$ + $2H_2O$ may proceed via the following mechanism: Step 1. $H_2O_2 + H^+ \rightarrow H_3O_2^+$ (rapid equilibrium, equilibrium constant = K) Step 2. $H_3O_2^+$ + $I^- \rightarrow H_2O$ + HOI (slow, rate constant k_2) Step 3. HOI + $I^- \rightarrow OH^- + I_2$ (fast, rate constant k_3) Step 4. $OH^- + H^+ \rightarrow H_2O$ (fast, rate constant k_4) Step 5. $I_2 + I^- \rightarrow I_3^-$ (fast, rate constant k_5) Derive the differential rate law for the reaction. Use [i], concentration of the reactant i, and the provided constant to express your answer. (10%) 5. Given the following two reactions at 298 K and 1 atm, $N_2(g) + O_2(g) \rightarrow 2NO(g)$ ΔH_1 $NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$ ΔH_2 Derive the standard enthalpy of formation, ΔH_{f}° , for NO₂(g) (10%)

.

