淡江大學 106 學年度日間部寒假轉學生招生考試試題
系別：數學學系數學組三年級
科目：線性代數
$9-1$
考試日期：1月6日（星期六）第1節本試題共 7 大題， 1 頁
\＃務必書寫過計算程，否則不予計分。
1．Find the volume of the parallelepiped determined by $u=(0,0,3), v=(1,1,-3)$ ， $\mathbf{w}=(0,1,1)$ ．（ $\mathbf{1 0 p o i n t s)}$

2．Let $\mathbf{A}=\left[\begin{array}{llll}1 & -1 & +0 & +0 \\ 0 & +1 & -1 & +0 \\ 0 & +0 & +1 & -1 \\ a & +b & +c & 1+d\end{array}\right]$ ．Find $\operatorname{det}(\mathbf{A})$. （12 points）

3．Let $\mathbf{P}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$ ．Show that \mathbf{P} is invertible and find P^{-1} ．（12 points）

4．Let A be $m \times n$ and B be $n \times m$ matrices．
Prove that if $\mathbf{m}<\mathbf{n}$ ，then BA is not invertible（不可逆）．（ 10 points）
5．Let $\mathbf{A}=\left[\begin{array}{ll}6 & -5 \\ 2 & -1\end{array}\right]$ ．
（a）Find the characteristic polynomial of A．（6points）
（b）Find an invertible matrix P such that $P^{-1} A P=D$ is diagonal．（ 10 points）
（c）Find $A^{10} \cdot(10$ point s）
6．Let $A=\left[\begin{array}{llll}1 & -1 & 0 & 2 \\ 0 & -2 & 2 & 4 \\ 1 & -1 & 0 & 3\end{array}\right]$ be 3×4 matrix．（ 20 points）
（a）Show that $A X=Y$ is consistent for all 3×1 matrix Y ．
（b）Find a basis for the solution space of $A X=0$ ．
7．Let $u_{1}=(1,1)$ and $u_{2}=(1,-1)$ ，and let $T: R^{2} \rightarrow R^{2}$ be the linear transformation such that $T\left(u_{1}\right)=(1,-2)$ and $T\left(u_{2}\right)=(-4,1)$ Find a formula for $T(x, y)$ ．（ 10 points）

