淡江大學105學年度日間部寒假轉學生招生考試試題

系別：數學學系數學組三年級

科目：線 性 代 數
考試日期：12月3日（星期六）第1節
本試題共 6 大題，
1 頁

1．（15 points）Solve the following system by Gauss elimination：

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =4 \\
2 x_{1}+2 x_{2}+5 x_{3} & =11 \\
4 x_{1}+6 x_{2}+8 x_{3} & =24
\end{aligned}
$$

2．（15 points）Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Whether vectors v_{1}, v_{2} ，and v_{3} span the vector space \mathbb{R}^{3} ？
3 ．Let A be a 3×3 real matrix given by

$$
\left(\begin{array}{lll}
-2 & 0 & 6 \\
-1 & 1 & 2 \\
-2 & 0 & 5
\end{array}\right)
$$

（a）（10 points）Find all eigenvalues and their corresponding eigenvectors of A ．
（b）（10 points）Is A diagonalizable？If yes，find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$ ．
（c）（5 points）Find the general form of A^{n} for $n \in \mathbb{N}$ ．
4．（15 points）Show that all eigenvalues of a symmetric matrix are real numbers．
5．（15 points）Let A be a symmetric matrix and $\lambda_{1} \neq \lambda_{2}$ be two distinct eigenvalues with corresponding eigenvectors x_{1} and x_{2} ．Show that x_{1} and x_{2} are orthogonal．

6．（15 points）Let $C[0,1]$ be the space of continuous functions on the interval $[0,1]$ with the usual function addition and scalar multiplication，and（standard）inner product given by

$$
<f, g>=\int_{0}^{1} f(x) g(x) d x
$$

Let $V=P_{2}=\operatorname{span}\left\{1, x, x^{2}\right\}$ and apply the Gram－Schmidt algorithm to the basis $1, x$ ， x^{2} to obtain an orthogonal basis for the space of quadratic polynomials．

