淡江大學106學年度日間部轉學生招生考試試題

水資源及環境工程學系

系別：
環境工程組三年級

科目：環境化學

本試題共 2 大題， 1 頁

A．Multiple Choice Questions（8 point／question）

1．What is the equivalent weight（E．W．）of $\mathrm{Ca}(\mathrm{OH})_{2}$ ：（A） 111 （B） 74 （C） 37 （D）18．5．（Atomic weight： $\mathrm{Ca}: 40$ ）

2．How many grams of AgNO_{3} are required to prepare 1 L of a 0.1 N solution to be used in a precipitation reaction？（A） 170 （B） 17 （C） 8.5 （D）108．（Atomic weight：Ag：108，N：14）

3．For the $\mathrm{CO}_{2(\mathrm{aq})}-\mathrm{HCO}_{3}{ }^{-}-\mathrm{CO}_{3}{ }^{2-}$ system in water，the incorrect statement is（A）for pH significantly below $\mathrm{pK}_{\mathrm{al}}, \quad \alpha_{\mathrm{CO2}(\mathrm{aq})}$ is essentially $1(\mathrm{~B})$ when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 1}, \quad \alpha_{\mathrm{CO2}(\mathrm{aq})}=\alpha_{\mathrm{HCO}^{-}}$（C） when $\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)$ ，the predominant species is $\mathrm{CO}_{2(\mathrm{aq})}$（D）when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 2}, \alpha_{\mathrm{HCO}}{ }^{-}=$ $\alpha_{\mathrm{CO} 3}{ }^{2-}$

4．Of the following，the least likely mode of transport of iron（III）（Fe）in a normal stream is：（A） bound to suspended humic material，（B）bound to clay particles by cation exchange processes， （C）as suspended $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ，（D）as soluble Fe^{3+} ion，（E）bound to colloidal clay humic substance complexes．

5．Regarding secondary wastewater treatment，the true statement of the following is（A）the activated sludge process is predominantly a physical／chemical process，（B）the activated sludge process gets rid of all of the sludge as soon as it is made，（C）trickling filters make use of a mass of biological sludge that is continuously pumped over the filter，（D）the trickling filter is an aerobic treatment process，（ E ）excess sludge from activated sludge treatment is likely to undergo the process represented by $2\left\{\mathrm{CH}_{2} \mathrm{O}\right\}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}_{2}$ ．

B．Questions

1．Triprotic acid $\left(\mathrm{H}_{3} \mathrm{~A}\right)$

$$
\begin{aligned}
H_{3} A \leftrightarrow H_{2} A^{-}+H^{+} & K_{a 1} \\
H_{2} A^{-} \leftrightarrow H A^{2-}+H^{+} & K_{a 2} \\
H A^{2-} \leftrightarrow A^{3-}+H^{+} & K_{a 3}
\end{aligned}
$$

Determine the ionization fraction（ α ）of each species（including $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}^{-}, \mathrm{HA}^{2-}$ ，and A^{3-} ）as a function of acid dissociation constants $\left(\mathrm{K}_{\mathrm{a}}\right)$ and hydrogen ion concentration $\left(\left[\mathrm{H}^{+}\right]\right) . \quad$（30 point）
2．Assuming levels of atmospheric CO_{2} are 390 ppm CO 2 （which means 0.039% by volume of normal dry air）at $25^{\circ} \mathrm{C}$ ，please answer following questions：（ 30 point）
（a）What is the concentration of $\mathrm{CO}_{2(\mathrm{aq})}$ ？
（b）What is the pH of rainwater due to the presence of 390 ppm carbon dioxide？
Henry＇s Law $\quad\left[\mathrm{X}_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{x}} * \mathrm{P}_{\mathrm{x}} \quad$ At $25^{\circ} \mathrm{C}$ the partial pressure of water is 0.0313 atm
$\mathrm{K}_{\mathrm{co} 2}=3.38^{*} 10^{-2} \mathrm{~mol} / \mathrm{L} / \mathrm{atm} \quad \mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{Ka}_{1}=4.45^{*} 10^{-7}$

