## 淡江大學 105 學年度日間部寒假轉學生招生考試試題

## 系別：物理系光電物理組二年級

科目：微 積 分
考試日期：12月3日（星期六）第1節 $\qquad$
＊＊＊務必寫出計算過程，否則不予計分。
1．$(10 \%)$ Find the derivative of the function，if
（1）$f(x)=\left(x+\frac{1}{x^{2}}\right)^{\sqrt{7}}$ ．
（2）$f(x)=\int_{1}^{\cos x} \sqrt[3]{1-t^{2}} d t$

2．（15\％）The following figure shows the graph of the derivative $f^{\prime}$ of a function $f$ ．
（1）On what interval is $f$ increasing？
（2）For what value of $x$ does $f$ have a local maximum or minimum？
（3）Sketch the graph of $f^{\prime \prime}$ ．


3．（5\％）Find an equation of the tangent plane to the surface $z=3 y^{2}-2 x^{2}+x$ at the point （ $2,-1,-3$ ）．

4．$(15 \%)$ Find the local maximum and minimum values and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$ ．

5．$(20 \%)$ Evaluate the integral．
（1） $\int_{1}^{2} x \sqrt{x-1} d x$
（2） $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$

6．$(10 \%)$ Find the Maclaurin series for the function $f(x)=\frac{1}{\sqrt{4-x}}$ and its radius of convergence．
7．$(10 \%)$ Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point（ $3,1,-1$ ）．

8．$(5 \%)$ Evaluate $\iint_{R} y \sin (x y) d A$ ，where $\mathrm{R}=[1,2] \times[0, \pi]$ ．

9．$(10 \%)$ Use polar coordinates to find the volume of the solid that lies under the cone $z=\sqrt{x^{2}+y^{2}}$ and above the disk $x^{2}+y^{2} \leq 4$.

