	部轉學生招生	I-9 DAVI	まくん	2
系別:數學學系數學組三年級	科目:線性代數	an a	and the second	3-
考試日期:7月21日(星期五) 第1節	本試題共	6 大題,	2	頁

$$2x_1 + 3x_2 - x_3 = 7$$
$$4x_1 + 5x_2 - 2x_3 = 10$$

- 2. (15 points) Determine whether the vectors $v_1 = [1, 2, 3, 1, 0], v_2 = [2, 2, 1, 3, 1]$, and $v_3 = [-1, 2, 7, -3, -2]$ in \mathbb{R}^5 are independent.
- 3. (20 points) Let A be a 3×3 real matrix given by

大学大学の中国

$$\begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}.$$

- (a) Find all eigenvalues and their corresponding eigenvactors of A.
- (b) Is A diagonalizable? If yes, find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.
- 4. (20 points) Let A be a $4 \times$ real matrix given by

 $\begin{bmatrix} 2 & -4 & 2 & -2 \\ 2 & -4 & 3 & -4 \\ 4 & -8 & 3 & -2 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$

- (a) Find the rank of A and a basis for the column space of A.
- (b) Find a basis for the nullspace N(A). What is the dimension of N(A)?
- 5. (15 points) Determine whether $S = \{1 x, 2 3x^2, x + 2x^2\}$ is a basis for the vector space P_2 of polynomials of degree at most 2.

淡江大學 106 學年度日月	間部轉學生招生考試試題	
系別: 數學學系數學組三年級	科目:線性代數 2 - 2	
考試日期:7月21日(星期五) 第1節	本試題共 6 大題, 2 頁	

6. (15 points) Find all eigenvalues and their corresponding eigenvectors of the linear transformation: $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

.

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ -8x_1 + 4x^2 - 6x_3 \\ 8x_1 + x_2 + 9x_3 \end{bmatrix}.$$