淡江大學106學年度碩士班招生考試試題

系別：數學學系A組
科目：線性代數
考試日期：3月4日（星期六）第2節
本試題共 6 大題， 2 頁
1．（20 pts）True or False．Explain the reason for your answer briefly．
（a）Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9\end{array}\right]$ ．Then A is diagonalizable．
（b）Let P be an invertible 3×3 matrix over \mathbb{R} ．Then $P\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right] P^{-1}$ is invertible．
（c）Let $\beta=\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 5\end{array}\right)\right\}$ ．Then β is a basis for \mathbb{R}^{3} ．
（d）Let A and B be two 3×3 matrices．Suppose A and B have the same characteristic polynomial． Then A is diagonalizable if and only if B is diagonalizable．

2．（10 pts）We can define an inner product on \mathbb{R}^{3} by

$$
<x, y>=\sum_{i=1}^{3} x_{i} y_{i} \text {, for all } x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { and } y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \text { in } \mathbb{R}^{3} .
$$

Use Gram－Schmidt process to construct an orthonormal basis γ from the basis

$$
\beta=\left\{(-1,0,1)^{t},(1,1,0)^{t},(1,1,-1)^{t}\right\}
$$

3．Let $A=\left[\begin{array}{ccc}\frac{3}{4} & 0 & -\frac{5}{4} \\ \frac{3}{2} & -1 & -\frac{3}{2} \\ -\frac{5}{4} & 0 & \frac{3}{4}\end{array}\right]$. Define $L_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
L_{A}(v)=A v, \text { for all } v \in \mathbb{R}^{3}
$$

（a）（10pts）Find all eigenvalues and eigenvectors of L_{A} ．
（b）（5pt s）Find a matrix P so that $D=P^{-1} A P$ is diagonal matrix．What is D ？
4．（15 pts）Let $B=\left[\begin{array}{ccc}1 & 1 / 2 & -1 / 2 \\ 0 & 3 / 2 & -1 / 2 \\ 2 & -1 / 2 & -1 / 2\end{array}\right]$ ．Find matrices Q and J so that $J=Q^{-1} B Q$ is the Jordan canonical form for B ．

淡江大學106學年度碩士班招生考試試題

系別：數學學系A 組
科目：線性代數
考試日期：3月4日（星期六）第2節本試題共 6 大題， 2 頁

5．（20 pts）Denote V a vector space of finite dimension over \mathbb{R} and $T: V \rightarrow V$ a linear transfor－ mation．Prove the following statements are equivalent．
（a）$T(v)=0$ for $v \in V$ if and only if $v=0$ ．
（b）T is $1-1$ ．
（c）$\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V ，then $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for V ．
6．（20 pts）Let A be an $n \times n$ real symmetric matrix．Show that $\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\langle A x, x\rangle}{\langle x, x\rangle}$ is the largest eigenvalue of A and $\min _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\langle A x, x\rangle}{\langle x, x\rangle}$ is the smallest eigenvalue of A

