淡江大學105學年度日間部寒假轉學生招生考試試題

系別:化學工程與材料工程學系三年級 科目:物理化學 33-考試日期:12月3日(星期六)第2節 本試題共 5 大題,1 頁

- (20%) A sample consisting of 1.0 mol of an ideal gas molecules with C_v = 20.8 J/K is initially at 4.0 atm and 300 K. It undergoes reversible adiabatic expansion until its pressure reaches 2.0 atm. Calculate (a) the final volume, (b) the final temperature, (c) the heat transferred (Q), (d) the work done (W), (e) the change in internal energy (ΔU), (f) the change in entropy of the system (ΔS).
- 2. (20%) When 0.50 mol C₆H₁₄ (hexane) is mixed with 2.0 mol C₇H₁₆ (heptane) at 298 K, calculate the Gibbs energy (ΔG_{mix}), entropy (ΔS_{mix}), and enthalpy of mixing (ΔH_{mix}). Assume the mixing solution is an ideal.
- 3. (20%) The equilibrium constant for the reaction N₂(g) + O₂(g) ≒ 2 NO(g) is 1.69x10⁻³ at 2300 K. A mixture consisting of 5.0 g of nitrogen and 2.0 g of oxygen in a container of volume 1.0 dm³ is heated to 2300 K and allowed to come to equilibrium. Calculate the mole fraction of NO at equilibrium.
- 4. (20%) The rate constant for the first-order decomposition of N₂O₅ in the reaction
 2 N₂O₅ (g) → 4 NO₂(g) + O₂(g) is k_r = 3.38×10⁻⁵ s⁻¹ at 25°C. (a) What is the half-life of N₂O₅? (b)What will be the pressure, initially 500 Torr, after 50 s, (3) What will be the pressure, initially 500 Torr, after 20 min?
- (20%) Atomic sodium produces a yellow glow (in some street lamps) resulting from the emission of radiation of 590 nm. Regarding the photon emission, the energy of emission can be described by Bohr frequency condition as below:

$\Delta \mathbf{E} = h \mathbf{v}$

where *h* is Plank's constant ($h = 6.626 \times 10^{-34} \text{ J s}$); ν is radiation frequency. In general, $\nu = c/\lambda$, c is the speed of light in a vacuum ($c = 3.0 \times 10^8 \text{ m/s}$); λ is the wavelength.

- (1) Calculate the energy per photon for radiation of this yellow glow.
- (2) If a proton is accelerated, to what speed (**u**) must be for this proton to have a wavelength of 3.0 cm? (Note: using the de Broglie relation: $\lambda = h/P$, *P* is the linear momentum, $P = m_p \mathbf{u}$; where m_p is the mass of a proton of 1.673×10^{-27} kg.

