系別：化學工程與材料工程學系三年級
考試日期：12月3日（星期六）第2節

科目：物理化學
本試題共 5 大題， 1 頁

1．（20\％）A sample consisting of 1.0 mol of an ideal gas molecules with $\mathrm{C}_{\mathrm{v}}=20.8 \mathrm{~J} / \mathrm{K}$ is initially at 4.0 atm and 300 K ．It undergoes reversible adiabatic expansion until its pressure reaches 2.0 atm ．Calculate（a）the final volume，（b）the final temperature，（c）the heat transferred（Q）， （d）the work done（W），（e）the change in internal energy（ $\Delta \mathrm{U}$ ），（f）the change in entropy of the system（ $\Delta \mathrm{S}$ ）．

2．(20%) When $0.50 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{14}$（hexane）is mixed with $2.0 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{16}$（heptane）at 298 K ， calculate the Gibbs energy $\left(\Delta \mathrm{G}_{\text {mix }}\right)$ ，entropy $\left(\Delta \mathrm{S}_{\text {mix }}\right)$ ，and enthalpy of mixing $\left(\Delta \mathrm{H}_{\text {mix }}\right)$ ．Assume the mixing solution is an ideal．

3．(20%) The equilibrium constant for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{g})$ is 1.69×10^{-3} at 2300
K ．A mixture consisting of 5.0 g of nitrogen and 2.0 g of oxygen in a container of volume 1.0 dm^{3} is heated to 2300 K and allowed to come to equilibrium．Calculate the mole fraction of NO at equilibrium．

4．(20%) The rate constant for the first－order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is $\mathbf{k}_{\mathrm{r}}=3.38 \times 10^{-5} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$ ．（a）What is the half－life of $\mathrm{N}_{2} \mathrm{O}_{5}$ ？（b）What will be the pressure，initially 500 Torr，after 50 s ，（3）What will be the pressure，initially 500 Torr，after 20 min ？

5．（20\％）Atomic sodium produces a yellow glow（in some street lamps）resulting from the emission of radiation of 590 nm ．Regarding the photon emission，the energy of emission can be described by Bohr frequency condition as below：

$$
\Delta \mathrm{E}=h v
$$

where h is Plank＇s constant $\left(h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right) ; v$ is radiation frequency．
In general，$\nu=\mathrm{c} / \lambda, \mathrm{c}$ is the speed of light in a vacuum $\left(\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) ; \lambda$ is the wavelength．
（1）Calculate the energy per photon for radiation of this yellow glow．
（2）If a proton is accelerated，to what speed（u）must be for this proton to have a wavelength of 3.0 cm ？（Note：using the de Broglie relation：$\lambda=h / P, P$ is the linear momentum， $P=\mathrm{m}_{\mathrm{p}} \mathbf{u}$ ；where m_{p} is the mass of a proton of $1.673 \times 10^{-27} \mathrm{~kg}$ ．

