系別：物理系光電物理組二年級

考試日期： 12 月 3 日（星期六）第 2 節

科目：普 通 物 理

本試題共 8 大題， 1 頁

1．What is the Poynting vector \vec{S} ？Furthermore，please find the \vec{S} for a given EM wave with the linearly polarized electric filed $\vec{E}=E_{0} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{k}\left[\right.$ hint：$\left.\frac{\partial B_{y}}{\partial t}=\frac{\partial E_{z}}{\partial x}\right][\mathbf{2 0}$ points］

2．Please explain the origin of the phase difference in optical interference［ $\mathbf{1 0}$ points］
3．What is the Snell＇s law？Please derive it by the Fermat＇s principle（the path of the light propagated is the one with a minimum traveling time）［10 points］

4．What is the de Broglie wavelength of a particle（with a mass \boldsymbol{m} and charge \boldsymbol{q} ）which is accelerated by a potential V to a nonrelativistic speed．［10 points］

5．The force of a stretched rubber band is given approximately by Hooke＇s Law（ $F_{x}=-k x$ ）Suppose a rubber band with $k=50.0 \mathrm{~N} / \mathrm{m}$ and at temperature $T=27^{\circ} \mathrm{C}$ is stretched by $x=1.2 \mathrm{~cm}$ ．For a small additional stretching，at what rate $d S / d x$ does the entropy of the rubber band decrease？［10 points］

6．What is the Hall effect？［ $\mathbf{1 0}$ points］

7．A bullet（with a mass m ）was fired horizontally at a rest block（with a mass of $8 \mathbf{m}$ ）which is connected to a fixed end with a spring（spring constant \boldsymbol{k} ）．（a） Please determine the initial velocity of the bullet if the stretching distance of the spring is \boldsymbol{d} after the bullet combined with the block．［10 points］（b）What is the thermal energy at the beginning of the collision？［10 points］

8．When you washed your Teddy bear（with a mass M_{B} ）with a washing machine，you will dray it by spinning it．Suppose the coefficient of static friction between Teddy bear and wall of the laundry tube is μ_{s} and the radius of the tube is R ， please determine the minimum speed of the spin which will keep Teddy on the wall of the laundry tube．（the gravitational
 constant is g）［10 points］

