淡江大學 105 學年度日間部轉學生招生考試試題 系別:化學工程與材料工程學系三年級 科目:物理化學 **46** 考試日期:7月 22 日(星期五)第3節 本試題共 大題, 頁

1. For a particle in a one-dimensional box of length L, the solution from Schrödinger equation, in case of potential energy V = 0, is

$$b_n = \left(\frac{2}{L}\right)^{1/2} \sin\left(\frac{n\pi x}{L}\right)$$
, for $0 \le x \le L$
or is

Knowing that the momentum operator is

$$\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx}$$

a. Derive the expression for energy E_n .

Given that

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$$

b. Estimate the expectation value of momentum $\langle \hat{p}_x \rangle$.

Ų

20%

2. The definition of partition function is

$$q = \sum_{i=1}^{\infty} e^{-\varepsilon_i/kT}$$

where ε_i is the energy of *i*-level relative to the level of i = 1, i.e. by defining $\varepsilon_1 = 0$. Using the expression of E_n derived in the previous problem, and given that

$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a}\right)^{1/2}$$

prove that for a particle in a one-dimensional box with L = X, the translational partition function q_X^T is approximated as

$$q_X^T = \frac{X}{\Lambda}$$
 , where $\Lambda = \frac{h}{(2\pi m k T)^{1/2}}$ is termed "Thermal wavelength"

20%

3. In a gas-phase reaction

$A + B \rightleftharpoons C + 2D$

it was found that, when 2.00 mol A, 1.00 mol B and 3.00 mol D were mixed and allowed to come to equilibrium at 25 °C, the resulting mixture contained 0.79 mol C at a total pressure of 1.00 bar. Calculate a. equilibrium constant K, b. $\Delta_r G^{\Theta}$.

20%

The osmotic pressure of solutions of polystyrene in toluene were measured at 25°C and the pressure was expressed in terms of the height of the solvent of density 1.004g cm⁻³:
c/(g dm⁻³)
2.042
6.613
9.521
12.602
h/cm
0.592
1.910
2.750
3.600

Calculate the molar mass of the polymer.

20%

5. Calculate q, w, ΔU, ΔS the change in entropies of the system, and ΔS_{surrounding} the change in entropies of the surrounding, and the total change in entropy ΔS_{total}, when 28 g nitrogen gas, taken as perfect gas with constant C_p = 29.1 J mol⁻¹, at 300 K and 6.0 bar expands to three times its initial volume in an adiabatic irreversible expansion against p_{ex} = 1.0 bar.

20%