淡江大學105學年度日間部轉學生招生考試試題

系別：化學工程與材料工程學系三年級
考試日期：7月22日（星期五）第3節 本試題共 大題，頁

1．For a particle in a one－dimensional box of length L ，the solution from Schrödinger equation，in case of potential energy $V=0$ ，is

$$
\psi_{n}=\left(\frac{2}{L}\right)^{1 / 2} \sin \left(\frac{n \pi x}{L}\right), \text { for } 0 \leq x \leq L
$$

Knowing that the momentum operator is

$$
\hat{p}_{x}=\frac{\hbar}{i} \frac{d}{d x}
$$

a．Derive the expression for energy E_{n} ．
Given that

$$
\int \sin ^{2} a x d x=\frac{x}{2}-\frac{\sin 2 a x}{4 a}
$$

b．Estimate the expectation value of momentum $\left\langle\hat{p}_{x}\right\rangle$ ．
20%
2．The definition of partition function is

$$
q=\sum_{i=1}^{\infty} e^{-\varepsilon_{i} / k T}
$$

where ε_{i} is the energy of i－level relative to the level of $i=1$ ，i．e．by defining $\varepsilon_{1}=0$ ．
Using the expression of E_{n} derived in the previous problem，and given that

$$
\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2}\left(\frac{\pi}{a}\right)^{1 / 2}
$$

prove that for a particle in a one－dimensional box with $L=X$ ，the translational partition function q_{X}^{T} is approximated as

$$
q_{X}^{T}=\frac{X}{\Lambda}, \text { where } \Lambda=\frac{h}{(2 \pi m k T)^{1 / 2}} \text { is termed "Thermal wavelength" }
$$

20%
3．In a gas－phase reaction

$$
A+B \rightleftarrows C+2 D
$$

it was found that，when $2.00 \mathrm{~mol} A, 1.00 \mathrm{~mol} \mathrm{~B}$ and 3.00 mol D were mixed and allowed to come to equilibrium at $25^{\circ} \mathrm{C}$ ，the resulting mixture contained 0.79 mol C at a total pressure of 1.00 bar．Calculate a．equilibrium constant K ，
b．$\Delta_{r} G^{\ominus}$ ．
20%

4．The osmotic pressure of solutions of polystyrene in toluene were measured at $25^{\circ} \mathrm{C}$ and the pressure was expressed in terms of the height of the solvent of density $1.004 \mathrm{~g} \mathrm{~cm}^{-3}$ ：

$c /\left(\mathrm{g} \mathrm{dm}^{-3}\right)$	2.042	6.613	9.521	12.602
h / cm	0.592	1.910	2.750	3.600

Calculate the molar mass of the polymer．
20%
5．Calculate $q, w, \Delta U, \Delta S$ the change in entropies of the system，and $\Delta S_{\text {surrounding }}$ the change in entropies of the surrounding，and the total change in entropy $\Delta S_{\text {total }}$ ，when 28 g nitrogen gas，taken as perfect gas with constant $C_{\mathrm{p}}=29.1 \mathrm{~J} \mathrm{~mol}^{-1}$ ，at 300 K and 6.0 bar expands to three times its initial volume in an adiabatic irreversible expansion against $p_{\mathrm{ex}}=1.0$ bar．

