淡江大學 105 學年度日間部轉學生招生考試試題		
系別:物理學系三年級	科目:應用數學	59-1
考試日期:7月22日(星期五) 第4節	本試題共 6	大題, 1 頁
1. A matrix is given by $C = \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}$	$ \begin{array}{ccc} 2 & 2 \\ 1 & 3 \\ 3 & 1 \end{array} $ (a) Find the eige	envalues and the
corresponding eigenvectors of	<i>C</i> . (12 pts) (b)	Suppose that
$f(C) = C^3 - 2C^2 + 5C - 3$, using the results of (a) to evaluate $f(C)$. (8 pts)		
2. A vector field is given by $\vec{A} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$. (a) Calculate <i>directly</i> $\oint \vec{A} \cdot d\vec{\sigma}$		
over the surface enclosed by a cube with four of its vertices at $(0, 0, 0)$, $(0, 0, 1)$, $(0, 1, 0)$ and $(1, 0, 0)$. (10 pts) (b) Evaluate the same integral by using the		

3. Suppose that \vec{r} is a position vector in Cartesian coordinates and its magnitude is expressed by r. Evaluate (a) $\vec{\nabla}(1/r)$ (6 pts) and (b) $\vec{\nabla} \cdot (\vec{r}/r^3)$ for $\vec{r} \neq 0.$ (9 pts)

divergence theorem. (10 pts)

- 4. Show that $f(x) = \frac{1}{\pi} \frac{\varepsilon}{x^2 + \varepsilon^2}$ approaches to one-dimensional $\delta(x)$ as $\varepsilon \to 0^+$. (10pts)
- 5. Solve the following homogeneous ordinary differential equation with degree of three. (15 pts)

$$-3xy^2y' + (2x^3 + y^3) = 0$$

6. (a) Find the Fourier series of the function f(x) = x in the range of $-\pi < x \le \pi$. (12 pts) (b) Using the results of (a) to evaluate the sum of the infinite series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots$ (8 pts)