系別：物理學系三年级

考試日期：7月 22 日（星期五）第4節

科目：應用數學
59.

1．A matrix is given by $C=\left(\begin{array}{ccc}-3 & 2 & 2 \\ 2 & 1 & 3 \\ 2 & 3 & 1\end{array}\right)$ ．（a）Find the eigenvalues and the corresponding eigenvectors of C．（12 pts）（b）Suppose that $f(C)=C^{3}-2 C^{2}+5 C-3$ ，using the results of（a）to evaluate $f(C) .(8 \mathrm{pts})$

2．A vector field is given by $\vec{A}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ ．（a）Calculate directly $\oint \vec{A} \cdot d \vec{\sigma}$ over the surface enclosed by a cube with four of its vertices at $(0,0,0),(0,0,1)$ ， $(0,1,0)$ and $(1,0,0)$ ．（ 10 pts ）（b）Evaluate the same integral by using the divergence theorem．（ 10 pts ）

3．Suppose that \vec{r} is a position vector in Cartesian coordinates and its magnitude is expressed by r ．Evaluate（a）$\vec{\nabla}(1 / r)(6 \mathrm{pts})$ and（b）$\vec{\nabla} \cdot\left(\vec{r} / r^{3}\right)$ for $\vec{r} \neq 0$ ． 9 pts）

4．Show that $f(x)=\frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}}$ approaches to one－dimensional $\delta(x)$ as $\varepsilon \rightarrow 0^{+}$． （10pts）

5．Solve the following homogeneous ordinary differential equation with degree of three．（ 15 pts ）

$$
-3 x y^{2} y^{\prime}+\left(2 x^{3}+y^{3}\right)=0
$$

6．（a）Find the Fourier series of the function $f(x)=x$ in the range of $-\pi<x \leq \pi$ ． （12 pts）（b）Using the results of（a）to evaluate the sum of the infinite series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+$ （8 pts）

