系別：物理學系三年級
科目：電磁學

考試日期：7月22日（星期五）第3節
本試題共 3 大題， 2 頁
※請詳細推導與配置相關圖形，否則不予給分！※相關公式在第2頁！
※請參考下面之圖形！第1題30分；第2題30分；第3題40分！
1．A non－conducting sphere of radius R carries a uniformly distributed charge Q ．
（a）Derive and plot the electric field $E(r)$ for $r<R$ ．
（b）Derive and plot the electric potential $V(r)$ for $r<R$ ．
（c）Calculate $\vec{\nabla} \cdot \vec{E}(\vec{r}), \vec{\nabla} \times \vec{E}(\vec{r})$ and $\vec{\nabla} V(\vec{r})$ for $r<R$ ．
2．At $t=0$ ，the switch is closed and we assume that there is no charge on the parallel－plate capacitor．The plates of the capacitor are circular and their radii are b ．
（a）Solve the detailed solution $I(t)$ of the differential equation of a series RC charging circuit．
（b）Find the final energy stored in the capacitor．
（c）Find the expression for $\vec{B}(r)$ at a point inside the capacitor at radius r from the center．$(r<b)$

3．The magnetic vector potential of a straight thin wire of length $2 L$ carrying steady current I is $\vec{A}(\vec{r})=\frac{\mu_{0} I}{4 \pi} \ln \left[\frac{z_{2}+\sqrt{z_{2}^{2}+\rho^{2}}}{z_{1}+\sqrt{z_{1}^{2}+\rho^{2}}}\right] \hat{z}$ ．
（a）Set $z_{1}=-L$ and $z_{2}=L$ and simplify the magnetic vector potential $\vec{A}(\vec{r})$ when $L \gg \rho$ ，that means it is near to the wire．
（b）Use the result of part（a）to write out the magnetic field $\vec{B}(\vec{r})$ through $\vec{B}(\vec{r}) \equiv \vec{\nabla} \times \vec{A}(\vec{r})$.
（c）Use the result of part（b）to write out $\vec{\nabla} \cdot \vec{B}(\vec{r})$ and $\vec{\nabla} \times \vec{B}(\vec{r})$ ．
（d）Use the result of part（b）to calculate the integral value of $\oint_{C} \vec{B} \cdot d \vec{\ell}$ ．

$V(r) 4 \underset{R}{\substack{\vdots \\ \vdots \\ \vdots}} r$

淡江大學105學年度日間部轉學生招生考試試題

系別：物理學系三年級
考試日期：7月 22 日（星期五）第 3 節

科目：電 磁 學
本試題共 3 大題， 2 頁
※相關公式：

$$
\begin{aligned}
& \vec{\nabla} f=\frac{\partial f}{h_{1} \partial q_{1}} \hat{q}_{1}+\frac{\partial f}{h_{2} \partial q_{2}} \hat{q}_{2}+\frac{\partial f}{h_{3} \partial q_{3}} \hat{q}_{3} \\
& \vec{\nabla} \cdot \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial\left(A_{1} h_{2} h_{3}\right)}{\partial q_{1}}+\frac{\partial\left(A_{2} h_{3} h_{1}\right)}{\partial q_{2}}+\frac{\partial\left(A_{3} h_{1} h_{2}\right)}{\partial q_{3}}\right] \\
& \vec{\nabla} \times \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{lll}
h_{1} \hat{q}_{1} & h_{2} \hat{q}_{2} & h_{3} \hat{q}_{3} \\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} A_{1} & h_{2} A_{2} & h_{3} A_{3}
\end{array}\right|
\end{aligned}
$$

