淡江大學105學年度日間部轉學生招生考試試題

考試日期：7月22日（星期五）第1節
本試題共 4 大題， 2 頁
1．Using dimensional equations，convert（ 20% ）
（a） 10 days to milliseconds．
（b） $20 \mathrm{~m} / \mathrm{h}$ to ft / s ．
（c） $500 \mathrm{~kg} / \mathrm{m}^{3}$ to $\mathrm{lb} / \mathrm{ft}^{3}$ ．
（d） $5.0 \mathrm{~kJ} / \mathrm{min}$ to W ．

2．A gas stream contains $18.0 \mathrm{~mol} \%$ hexane and the remainder nitrogen．The stream flows to a condenser，where its temperature is reduced and some of the hexane is liquefied．The hexane mole fraction in the gas stream leaving the condenser is 0.05 ．Liquid hexane condensate is recovered at a rate of $1.5 \mathrm{~L} / \mathrm{min}$ ．The density of liquid hexane is $0.655 \mathrm{~g} / \mathrm{cm}^{3}$ ．(25%)

（a）What is the flow rate of the gas stream leaving the condenser in $\mathrm{mol} / \mathrm{min}$ ？
（b）What percentage of the hexane entering the condenser is recovered as a liquid？

3．Saturated steam at 1 atm is discharged from a turbine at a rate of $1000 \mathrm{~kg} / \mathrm{h}$ ．Superheated stream at $300^{\circ} \mathrm{C}$ and 1 atm is needed as a feed to a heat exchange；to produce it，the turbine discharge stream is mixed with superheated steam available from a second source at $400^{\circ} \mathrm{C}$ and 1 atm ．The mixing unit operates adiabatically．Calculate the amount of superheated steam at $300^{\circ} \mathrm{C}$ produced and the required mass flow rate of the $400{ }^{\circ} \mathrm{C}$ steam．（ 25% ）

淡江大學105學年度日間部轉學生招生考試試題

系別：化學工程與材料工程學系三年級 科目：質 能 均 衡

$$
21-2
$$

考試日期：7月22日（星期五）第1節本試題共 4 大題， 2 頁 4．Ethane is burned with 50% excess air．The percentage conversion of the ethane is 90% ；of the ethane burned， 25% reacts to form CO and the balance reacts to form CO_{2} ．The reactions are listed as follows．

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{6}+\frac{5}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The compositions of air are $21 \mathrm{~mol} \%$ of O_{2} and $79 \mathrm{~mol} \%$ of N_{2} ．Calculate：
（a）The molar composition of the stack gas on a dry basis．
（b）The mole ratio of water to dry stack gas．

