# 淡江大學105學年度日間部轉學生招生考試試題 

系別：數學學系三年級
考試日期：7月22日（星期五）第1節

科目：機率與統計學
本䧕題共 5 大題，／頁

1．（25\％）Let the joint p．m．f．of $X$ and $Y$ be
$f(x, y)=1 / 4, \quad(x, y) \in S=\{(0,0),(1,1),(1,-1),(2,0)\}$ ．
i）．Compute $E(X)$ and $\operatorname{Var}(X)$
ii）．Compute $E(X \mid Y=0)$ and $\operatorname{Var}(X \mid Y=0)$ ．
iii）Find the covariance of $X$ and $Y$ ．
iv）Prove or disprove that $X$ and $Y$ are independent．
v）．Show that $E(X)=E(E(X \mid Y))$
2． $\mathbf{( 2 0 \%}$ ）Customers arrive in a certain shop according to Poisson process at mean rate of 20 per hour（ $\lambda=20$ persons $/ \mathrm{hr}$ ）．Let $T$ denote the waiting time in minutes until the first customer arrival．
i）．Find the p．d．f．and the moment generating function of $T$ ．
ii）．What are the mean and variance of $T$ ？
iii）．Show that $P(T>5 \mid T>3)=P(T>2)$ ．
3．$(20 \%)$ Let $X_{1}, X_{2}, X_{3}$ and $X_{4}$ be random variables from $U(0, \theta)$ ，and denote their order statistics by $X_{(1)}, X_{(2)}, X_{(3)}$ and $X_{(4)}$ ，respectively．
i）．Show that the largest order statistic $X_{(4)}$ is sufficient for $\theta$ ．
ii）．Compute the probability $F(t)=P\left(X_{(4)} \leq t\right)$ ．
iii）．Compute $E\left(X_{(4)}\right)$ ．
iv）．Find a function $h\left(X_{(4)}\right)$ so that $E h\left(X_{(4)}\right)=\theta$ ．
4．$(15 \%)$ Let $X_{1}, X_{2}$ and $X_{3}$ be i．i．d．random variables from $N(\mu, 12)$ ．Consider the test for the null hypothesis $H_{0}: \mu=0$ against the alternative hypothesis $H_{1}: \mu=1$ with significance level 0.05 ．
i）．Construct a critical region $A$ so that the test has level 0.05 ．
ii）．Find the power of this test．
iii）．Compute the p－value if we observe $X_{1}=1, X_{2}=0.96$ and $X_{3}=1.96$ ．
5．$(\mathbf{2 0 \%})$ In a simple linear regression $Y_{i}=\alpha+\beta X_{i}+\epsilon_{i}, \quad i=1, \cdots, n$ ，where $\epsilon_{i}$ are i．i．d．$N\left(0, \sigma^{2}\right)$ ．
i）．Find the maximum likelihood estimates（me）$\hat{\alpha}, \hat{\beta}$ and $\hat{\sigma}^{2}$ of $\alpha$ and $\beta$ and $\sigma^{2}$ ，respectively．
ii）．Show that me of $\beta$ is unbiased．
iii）．Explain why $\hat{\beta}$ and $\hat{\sigma}^{2}$ are independent．
iv）．Find a $95 \%$ confidence interval for $\beta$ when $\sigma^{2}$ is unknown．

