淡江大學105學年度日間部轉學生招生考試試題

系別:數學學系三年級	科目:機率與統計學	5 - 1
考試日期:7月22日(星期五) 第1節	本試題共 5 大題,	/ 頁

- 1. (25%) Let the joint p.m.f. of X and Y be
- $f(x,y) = 1/4, (x,y) \in S = \{(0,0), (1,1), (1,-1), (2,0)\}.$
- i). Compute E(X) and Var(X)
- ii). Compute $E(X \mid Y = 0)$ and $Var(X \mid Y = 0)$.
- iii) Find the covariance of X and Y.
- iv) Prove or disprove that X and Y are independent.
- v). Show that E(X) = E(E(X | Y))
- 2. (20%) Customers arrive in a certain shop according to Poisson process at mean rate of 20 per hour (λ =20 persons/hr). Let T denote the waiting time in minutes until the first customer arrival.
- i). Find the p.d.f. and the moment generating function of T.
- ii). What are the mean and variance of T?
- iii). Show that P(T > 5 | T > 3) = P(T > 2).

3. (20%) Let X_1 , X_2 , X_3 and X_4 be random variables from $U(0, \theta)$, and denote their order statistics by $X_{(1)}, X_{(2)}, X_{(3)}$ and $X_{(4)}$, respectively.

- i). Show that the largest order statistic $X_{(4)}$ is sufficient for θ .
- ii). Compute the probability $F(t) = P(X_{(4)} \le t)$.
- iii). Compute $E(X_{(4)})$.
- iv). Find a function $h(X_{(4)})$ so that $Eh(X_{(4)}) = \theta$.

4. (15%) Let X_1, X_2 and X_3 be i.i.d. random variables from $N(\mu, 12)$. Consider the test for the null hypothesis $H_0: \mu = 0$ against the alternative hypothesis $H_1: \mu = 1$ with significance level 0.05.

- i). Construct a critical region A so that the test has level 0.05.
- ii). Find the power of this test.
- iii). Compute the p-value if we observe $X_1 = 1, X_2 = 0.96$ and $X_3 = 1.96$.
- 5. (20%) In a simple linear regression $Y_i = \alpha + \beta X_i + \epsilon_i$, $i = 1, \dots, n$, where ϵ_i are i.i.d. $N(0, \sigma^2)$.
- i). Find the maximum likelihood estimates (mle) $\hat{\alpha}, \hat{\beta}$ and $\hat{\sigma}^2$ of α and β and σ^2 , respectively.
- ii). Show that mle of β is unbiased.
- iii). Explain why $\hat{\beta}$ and $\hat{\sigma}^2$ are independent.
- iv). Find a 95% confidence interval for β when σ^2 is unknown.