淡江大學105學年度日間部轉學生招生考試試題

系別：數學學系三年級

科目：線 性 代 數
$7=$
考試日期：7月22日（星期五）第1節
本試題共 6 大題， 1 頁

Please show all your work to receive full credit．

1．$(20 \mathrm{pts})$ Let $A=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 3 & 7 & 1 & 4 \\ 1 & 4 & 2 & 3\end{array}\right]$ ．
（a）Find a basis for the column space of A ．
（b）Let $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ ．If the linear system $A \mathbf{x}=\mathbf{b}$ has a solution，what condition on b_{1}, b_{2}, b_{3} should be satisfied？

2．（ 15 pts ）Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation．Suppose $T(1,2)=(3,4)$ and $T(3,4)=(1,2)$ ．Find a formula for $T(x, y)$ ，where $x, y \in \mathbb{R}$ ．

3．$(20 \mathrm{pts})$ Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ ．（Note that A is a positive definite symmetric matrix．）
（a）Verify that $\lambda=1$ and $\lambda=4$ are eigenvalues of A ．
（b）For each eigenvalue of A ，find an orthonormal basis for the associated eigenspace．
（c）Find a square matrix B such that $B^{T} B=A$ ．

4．（15 pts）Let $P_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}$ ，which is a vector space over \mathbb{R} ．
（a）Verify that $B=\left\{1+x+x^{2}, 1+x^{2}, 2+x+4 x^{2}\right\}$ is a basis for P_{2} ．
（b）Find the coordinate vector of $1+2 x+3 x^{2}$ with respect to B ．

5．（ 15 pts ）Suppose v_{1}, v_{2}, v_{3} are all nonzero vectors in \mathbb{R}^{3} ．If $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set，show that S forms a basis for \mathbb{R}^{3} ．

6．（ 15 pts）Suppose A is an $n \times n$ matrix with real entries．If $\lambda=0$ is an eigenvalue of A ，show that A is not invertible．

