淡江大學 105 學年度日間	部轉學生招生	考試試題
系別:數學學系三年級	科目:線性代數	17-1
考試日期:7月22日(星期五) 第1節	本試題共 6	大題, 1 頁

Please show all your work to receive full credit.

1. (20 pts) Let $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 3 & 7 & 1 & 4 \\ 1 & 4 & 2 & 3 \end{bmatrix}$. (a) Find a basis for the column space of A. (b) Let $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. If the linear system $A\mathbf{x} = \mathbf{b}$ has a solution, what condition on b_1, b_2, b_3 should be satisfied?

2. (15 pts) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Suppose T(1,2) = (3,4) and T(3,4) = (1,2). Find a formula for T(x,y), where $x, y \in \mathbb{R}$.

3. (20 pts) Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. (Note that A is a positive definite symmetric matrix.)

(a) Verify that $\lambda = 1$ and $\lambda = 4$ are eigenvalues of A.

(b) For each eigenvalue of A, find an orthonormal basis for the associated eigenspace. (c) Find a square matrix B such that $B^T B = A$.

4. (15 pts) Let $P_2 = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$, which is a vector space over \mathbb{R} . (a) Verify that $B = \{1 + x + x^2, 1 + x^2, 2 + x + 4x^2\}$ is a basis for P_2 .

(b) Find the coordinate vector of $1 + 2x + 3x^2$ with respect to B.

5. (15 pts) Suppose v_1, v_2, v_3 are all nonzero vectors in \mathbb{R}^3 . If $S = \{v_1, v_2, v_3\}$ is an orthogonal set, show that S forms a basis for \mathbb{R}^3 .

6. (15 pts) Suppose A is an $n \times n$ matrix with real entries. If $\lambda = 0$ is an eigenvalue of A, show that A is not invertible.