淡江大學105學年度碩士班招生考試試題

28-

系別:電機工程學系通訊與電波組

科目:工程數學

考試日期:3月5日(星期六) 第2節

本試題共 6 大題, 1 頁

- (1) (15%) Find the derivate of $f(x) = 3 \frac{\ln(x+2)}{\ln(x-2)}$, and then evaluate it at x=2.
- (2) (15%) (i) Assume $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$; please prove that : rdr = xdx + ydy + zdz
 - (ii) Assume the function \vec{F} is $\vec{F} = \hat{x} \frac{\partial \varphi}{\partial x} + \hat{y} \frac{\partial \varphi}{\partial y} + \hat{z} \frac{\partial \varphi}{\partial z}$; please prove that: $\nabla \times \vec{F} = 0$

Hint:
$$\nabla \times \vec{A} = \hat{x}(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}) + \hat{y}(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}) + \hat{z}(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y})$$

(3) (15%) For the following equation, find all the different forms of the solution: $y''(x) + k^2y(x) = 0$

Hint: Consider the cases of $k^2>0$, =0, and <0, respectively.

- (4) (15%) When we try to use the series function (1) to approximate the function f(x) (2) $g(x) = \sum_{n=1}^{\infty} C_n \sin(\frac{n\pi}{b}x) \qquad \dots (1)$ $f(x) = \begin{cases} -1, -b < x < 0 \\ +1, 0 < x < b \end{cases} \dots (2)$
 - (i) find the coefficients C_n ; (ii) What are the values of g(x) outside [-b, b]?
- (5) (20%) Assume the function \vec{F} is $\vec{F} = \frac{\hat{x}x + \hat{y}y + \hat{z}z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$ and let points $P_1 = (1,0,0)$, $P_2 = (2,0,0)$;
 - i) Please find the value of the line integral $\int_{P_1}^{P_2} \vec{F} \cdot \vec{dl}$ along the line segment $\overline{P_1P_2}$.
 - ii) Let points $P_3=(0,0,1)$, $P_4=(0,0,2)$, Please find the value of the line integral $\int_{P_3}^{P_4} \vec{F} \cdot \vec{dl}$ along the line segment $\overline{P_3P_4}$.
- (6) (20%) For the following equation,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = y^{-\frac{1}{2}}$$

with the initial conditions y=0 & $\frac{dy}{dt}=0$ at t=0; please solve this for y(t).

Hint: you may start by multiplying both sides of the equation with $2\frac{dy}{dt}$.