淡江大學 105 學年度碩士班招生考試試題

系別:數學學系B組

科目:統計學

考試日期:3月5日(星期六) 第3節

本試題共 6 大題, 1

頁

- 1.(20%). Suppose that the distribution for blood type is 50% of "O", 30% of "A", 15% of "B" and 5% of "AB". A random sample contains 20 persons and let X_O , X_A , X_B and X_{AB} denote the number of persons of blood type "O", "A", "B" and "AB", respectively.
 - i). What is the distribution of X_O .
 - ii). What is the probability $P(X_O = 8, X_A = 7, X_B = 4, X_{AB} = 1)$
 - iii). Compute $E(X_OX_A)$
- **2.(20%)** Consider the simple linear regression $Y_i = \alpha + \beta X_i + \epsilon_i$, $i = 1, \dots, n$, where ϵ_i are i.i.d. $N(0, \sigma^2)$, let $\hat{\alpha}$, $\hat{\beta}$ be the least squares estimates of α and β .
- i). Write down the likelihood function.
- ii). Prove that $\hat{\beta} = S_{XY}/S_{XX}$, $\hat{\alpha} = \bar{Y} \hat{\beta}\bar{X}$, where $S_{XY} = \sum [(Y_i \bar{Y})(X_i \bar{X})]$, and $S_{XX} = \sum (X_i \bar{X})^2$.
- iii). Compute the M.L.E. for σ^2
- iv). Show that $\hat{\beta}$ and $\hat{\alpha}$ are unbiased estimators of β and α .
- **3.(10%)** Let p equal the proportion of Americans who favor the death penalty. If a random sample n = 1000 Americans yield y = 800 who favored the death penalty, find an approximate 90% confidence interval for p.
- 4.(10%) Customers arrive in a certain shop according to an approximate Poisson process at a mean rate of 0.8 person/minute. Let X denote the waiting time in minutes until the first customer arrives.
- i). Find the cdf $F(t) = P(X \le t)$ of X.
- ii). Show that $\lambda(t) = \frac{F'(t)}{S(t)}$ is a constant where S(t) = 1 F(t).
- 5. (20%) Let $X_{(1)}, \dots, X_{(4)}$ be the order statistics of X_1, \dots, X_4 , where X_1, \dots, X_4 are i.i.d. from $U(0, \theta)$.
 - i). Show that $X_{(4)}$ are the maximum likelihood estimate of θ .
 - ii). What is the conditional distribution of X_1 given $X_{(4)} = 2$? Is $X_{(4)}$ sufficient for θ ?
 - iii). Compute $E[X_{(4)}]$, than find an unbiased estimator of θ .
- **6.(20%)** Let X_1, \dots, X_{25} be iid $N(\mu, 100)$. To test $H_0: \mu = 80$ against $H_1: \mu > 80$, let the critical region be defined by $C = \{(x_1, x_2, \dots, x_{25}) : \bar{x} \geq 83.3\}$.
 - a). What is the power function $\beta(\mu)$ for this test? Sketch it.
 - b). What is the significance level of this test?
 - c) What is the p-value corresponding to $\bar{x} = 82$.
 - d). This test is known to be uniformly most powerful. Why?