淡江大學九十四學年度碩士班招生考試試題31寸

系別:數學學系

科目:統 計 學

准带項目請打「V」 簡單型計算機 本試題共 __ 頁

注意事項:解題過程必須寫清楚,若只寫答案不予計分。

(1)(30%) Let $X_1, X_2, ..., X_n$ be a r.s. (random sample) from a normal distribution with mean μ and variance σ^2 , derive(導出) a $100(1-\alpha)$ % confidence interval for μ under each of the following conditions: (a) σ^2 is known, (b) σ^2 is unknown, and (c) we cannot assume that our random sample comes from a normal distribution, but n is large.

Note: Use symbols to represent quantiles, for example, let z_a stand for the number that satisfies $P(Z > z_a) = \alpha$, where Z is a standard normal random variable.

- (2)(20%) If Y has a binomial distribution with parameters n and p, then it is obvious that Y/n is an unbiased estimator of p. To estimate the variance of Y, we generally use V = n(Y/n)(1-Y/n).
- (a) Show that V is a biased estimator for the variance of Y.
- (b) Modify V slightly to form an unbiased estimator of the variance of Y. (對 V 做輕微修正,使它變成不偏估計量。)
- (3)(20%) Let X_1 , X_2 be i.i.d. Poisson(λ) random variables. Use the definition(定義) of sufficient statistics to show that
- (a) X_1+X_2 is sufficient for λ .
- (b) X_1+2X_2 is not sufficient for λ .
- (4) (10%) Let $X_1, X_2, ..., X_n$ be a random sample from a population with the following probability function:

 $P(X = t_1) = (1 - \theta)/2$, $P(X = t_2) = 1/2$, $P(X = t_3) = \theta/2$, $0 < \theta < 1$. Find the maximum likelihood estimator of θ .

- (5)(20%) (a) State the Neyman-Pearson Lemma(敘述內容即可,不用證明).
- (b) Find a most powerful size α test of H_0 : $X \sim f_0(x)$, where $f_0(x)$ is the standard normal density, against H_1 : $X \sim f_1(x)$, where $f_1(x) = \frac{1}{2}e^{-|x|}$, $-\infty < x < \infty$, based on a sample of size one.