淡江大學 98 學年度碩士班招生考試試題

系別:數學學系

科目:高等微積分

准帶項	目請打「V」	
	簡單型計算機	
本試題共	頁, 7 大題	

- A set S in R is said to be compact if, and only if, every open covering of S contains a finite subcover. Show that (0,1) is not compact. (10%)
- 2. Let $\{a_n\}$ be a sequence in R. If $\lim_{n\to\infty} a_n$ exists, show that $\{a_n\}$ is bounded. (15%)
- 3. Show that f(x) = |x| is continuous but not differentiable at x = 0. (15%)
- 4. Let $\{f_n\}$ be a sequence of functions on $D \subseteq R$ to R and f be function on D. We say $\{f_n\}$ converges uniformly to f on D if for every $\varepsilon > 0$, there is N such that for all $n \ge N$ implies

$$|f_n(x) - f(x)| < \varepsilon \text{ for all } x \in D.$$
 (15%)

- (a) Show that $f_n(x) = \frac{1}{n}\sin(nx)$ converges uniformly to 0 on D = R.
- (b) Show that $f_n(x) = x^n$ doesn't converges uniformly on $D = [0,1] \subset R$.
- 5. (a) Let f be a continuous defined on [a,b] into R. Show that (15%)

$$\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x).$$

(b) Evalulate $\frac{d}{dx} \int_{1}^{x^2} e^{\sqrt{t}} \sin(2t) dt$.

6. Let
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
 (15%)

- (a) Show that f(x, y) is continuous at (0,0).
- (b) Find $(D_i f)(x, y)$ for all $x, y \in \mathbb{R}^2$.
- (c) Find $(D_2 f)(x, y)$ for all $x, y \in \mathbb{R}^2$.
- 7. (a) Is it possible to solve

$$uy + vx + w + x^2 = 0$$

$$uvw + x + y + 1 = 0$$

for (x, y) in terms of (u, v, w) near (u, v, w) = (2,1,0), (x, y) = (-1,0).

(b) Find
$$\frac{\partial x}{\partial u}$$
, $\frac{\partial y}{\partial w}$ at $(u, v, w) = (2, 1, 0)$.