淡江大學九十二學年度碩士班招生考試試題

系別:數學學系

科目:高等微積分

准有	净项目 1	計打	۲٥٦	否则打	ГX	į
		簡單	전 하	算機		
			X			

本試題共 | 頁

- 1. Let A be a subset of R (the set of real numbers) and $F: R \rightarrow R$. State or explain the following theorem or terminology.
 - (a) A is dense in R. (3 points)
 - (b) F is uniformly continuous on R. (3 points)
 - (c) Intermediate Value Theorem. (3 points)
 - (d) Cauch sequence in R. (3 points)
 - (e) Archimedean Principle. (3 points)

2. Find
$$\frac{dy}{dx}$$
 if $y = \int_{0}^{\cos x} \sqrt{1+t^2} dt$. (10 points)

- 3. Find a function $f:[0,1] \to R$ such that f is not Riemann integrable on [0,1] but |f| is Riemann integrable on [0,1]. (10 points)
- 4. Let $a_n > 0$ for all natural numbers n. Show that if $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} a_n^2$ converges. (10 points)
- 5. Let $f_n(x) = n(1-x)x^n$, $0 \le x \le 1$.
 - (a) Find the limit function f(x) of $f_n(x)$. (5 points)
 - (b) Show that $f_{*}(x)$ is not uniformly convergent on [0,1]. (10 points)
- 6. Evaluate each of the following:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)}$$
.(7 points)

(b)
$$\int_{0}^{1} dx \int_{2\pi}^{2} e^{y^{2}} dy$$
 .(7 points)

(c)
$$\lim_{n\to\infty} (1+\frac{x}{n})^n$$
.(6 points)

- 7. Let $F: R \to R$ be continuous. Show that if F(x)=0 for every rational number x, then F(x)=0 for every real number x. (10 points)
- 8. Let E be a nonempty subset of R. For x in R, let $d(x) = \inf\{|x-y|: y \in E\}$.
 - (a) Show that $|d(x)-d(y)| \le |x-y|$. (5 points)
 - (b) Show that if E is closed and $x \notin E$, then d(x) > 0. (5 points)