系別:數學學系

科目:線性代數

本試題共 2 頁, 6 大題

#務必書寫過計算程,否則不予計分。

1. Let
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & -6 \\ 0 & 0 & 2 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial of A. (5points)
- (b) Find an invertible matrix P such that P-1 AP is diagonal. (10 points)
- (c) Find A⁸. (5points)
- 2. Let A be $m \times n$ matrix. Show that the column space of A and the null space of A^{T} are orthogonal. (10 points)

3. Let B= {(1,1,0), (1,2,0), (0,1,2)} and A =
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
.

- (a) Show that A is invertible and find A-1. (10 points)
- (b) Show that B is a basis for R³. (5 points)
- © Let R³ be the inner product space with the Euclidean inner product. Use the Gram-Schmidt orthonormalization process to transform the basis B into an orthonormal basis. (10 points)
- (d) Let $W = \text{span}\{(1,1,0), (1,2,0)\}$. Find the orthogonal projection of (1,-1,2) onto W. (5points)

本試題雙面印製

系別:數學學系

科目:線性代數

本試題共 2 頁, 人 大題

4. Let P_1 be the set of all polynomials of degree at most 1 and $B=\{1, x\}$. Let $T: R^3 \rightarrow P_1$ be defined by

T(a,b,c)=2c-b+(a-b)x and $D=\{(1,0,0),(0,1,0),(0,1,1)\}.$

- (a) Find the kernel of T. (5 points)
- (b) Find the matrix of T corresponding to the ordered bases D and B. (10 points)

5. Let
$$A = \begin{bmatrix} 1 & -1 & 2 & -2 & 3 \\ 2 & -2 & 4 & -4 & 6 \\ 0 & 0 & 0 & 0 & 1 \\ 4 & -5 & 7 & -7 & 11 \end{bmatrix}$$
, $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ and $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$.

- (a) Find a necessary and sufficient condition on b such that AX=b is consistent and find the general solutions of AX=b. (10 points)
- (b) Find Rank(A). (5points)
- 6. Let M be the vector space of all 2×2 matrices. Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and

 $U=\{X\in M\mid AX=XA\}.$

- (1) Show that U is a subspace of M. (5points)
- (2) Find the dimension of U. (5points)