淡江大學九十三學年度碩士班招生考試試題

系別:數學學系

科目:線 性 代 數

准帶項目請打「○」否則打「× 」 ※ 簡單型計算機

本試題共 / 頁

Answer all questions. Show all work.

1. Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be given by

$$T(x, y, z) = (x + y + z, x + y + z, x + y + z).$$

Find the characteristic and minimal polynomials of T. (10%)

2. Let
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 5 & -3 \\ -1 & 2 & 4 \end{pmatrix}$$
. Find (i) $adj(A)$; (ii) A^{-1} . (12%)

- 3. Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Find (i) the eigenvalues and eigenvectors of A; (ii) A^n where n is a positive integer. (14%)
- 4. Find a basis for the orthogonal complement in \mathbb{R}^4 of the subspace W = sp((1,2,2,1),(3,4,2,3)). (10%)
- 5. Let $B=(x^2,x,1)$ and $B'=(x^2-x,2x^2-2x+1,x^2-2x)$ be ordered bases of $P_2=\{polynomials\ over\ \mathbf{R}\ with\ degree\ at\ most\ 2\}=\{a_2x^2+a_1x+a_0\mid a_2,a_1,a_0\in\mathbf{R}\}$. Find the coordinate matrix from B to B', and use it to find the coordinate vector of $2x^2+3x-1$ relative to B'. (12%)
- 6. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$. Factor A in the form A = QR, where Q is a 3×2 matrix with orthonormal column vectors and R is a 2×2 upper triangular invertible matrix. (12%)
- 7. Suppose $T: V \to V$ is a linear transformation in the finite dimensional vector space V. Show that there exists an integer k such that $Im(T^j) = Im(T^k)$, $ker(T^j) = ker(T^k)$ whenever $j \geq k$, and show that $ker(T^k)$ and $Im(T^k)$ are a complementary pair of T-invariant subspaces of V. (10%)
- 8. Let $T:V\to V$ be a self adjoint linear transformation in the finite dimensional inner product space V. Suppose that \mathbf{e}_1 and \mathbf{e}_2 are distinct eigenvalues of T with corresponding eigenvectors \mathbf{E}_1 and \mathbf{E}_2 . Show that \mathbf{E}_1 and \mathbf{E}_2 are orthogonal. (10%)
- 9. Let $f(\mathbf{x})$ be a quadratic form, and let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of the symmetric coefficient matrix of $f(\mathbf{x})$. Show that the maxima of $f(\mathbf{x})$ on $||\mathbf{x}|| = 1$ is the maximum of the λ_i . (10%)