淡江大學九十二學年度碩士班招生考試試題

系別:數學學系

科目:線 性 代 數

准带项目請打「〇」否則打「x 」
簡單型計算機
×

本試題共 二 頁

SHOW ALL YOUR WORKING

1. Let A be the 3×3 matrix given by A = PQ, where

$$P = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and $Q = [2 -1 2]$.

Find A, A^2 and A^{100} . (13%)

- 2. Given $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & -1 & 3 \end{bmatrix}$, evaluate det A and find A^{-1} if it exists. (12%)
- 3. Let P be the set of all polynomials in one variable with real coefficients. Then P is a real vector space under usual polynomial addition and scalar multiplication. Let P_n be the subspace consisting of polynomials of degree less than or equal to n. Let T: $P_2(R) \longrightarrow P_3(R)$ be the linear transformation defined by: T(p(x)) = 2p(x) + p'(x), where p'(x) denotes the derivative of p(x).
 - (i) Show that $\{1,1+x,(1+x)^2\}$ is a basis of $P_2(R)$. (5%)
 - (ii) Find the matrix representation of T relative to the ordered bases $\{1,1+x,(1+x)^2\}$ of $P_2(R)$ and $\{1,x,x^2,x^3\}$ of $P_n(R)$. (5%)
 - (iii) What is the rank of T? (4%)
 - (iv) Is T one-to-one ? Onto ? (6%)
- 4. Let W_1 and W_2 be subspaces of a vector space V. Prove that if $W_1 \bigcup W_2$ is also a subspace of V, then either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. (15%)

淡江大學九十二學年度碩士班招生考試試題

系別:數學學系

科目:線性代數

准帶項目請打「○」否則打「× 」 簡單型計算機 ×

本試題共 二 頁

5. Given matrices

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Suppose that A and B are similar.

- (a) Determine x and y. (10%)
- (b) Find an invertible matrix P such that $P^{-1}AP = B$. (10%)
- 6. (a) Find the solution set of the following system of linear equations:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 0$$

 $x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3$ (10%)
 $x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2$

(b) Let W be the subspace of \mathbb{R}^5 spanned by $(1,1,1,1,1)^T$, $(1,1,1,2,2)^T$ and $(1,1,1,2,3)^T$. Find an orthonormal basis for the subspace \mathbb{W}^L . (10%)