淡江大學九十學年度碩士班招生考試試題

系別:數學學系

科目:線性代數

	<u> </u>	13/K II	1 4	, % ^
	准带项目請打「O	」否則打「	L X	
	計算機	字典		
-	×	×		·

本試題共 /

頁

SHOW ALL YOUR WORK

1. Let
$$A = \begin{pmatrix} 5 & 4 & 3 \\ -1 & 0 & -3 \\ 1 & -2 & 1 \end{pmatrix}$$
, find the eigenvalues and eigenvectors of A. Is A

diagonalizable? Give your reason. (15%)

2. Find the matrix representation of the following linear transformation

$$T: \mathbb{R}^4 \to P_3(\mathbb{R})$$
 given by

$$T(a_1,a_2,a_3,a_4) = a_2 + a_3 + (a_1 + a_4)x + (a_2 + a_3)x^2 + (a_1 - a_4)x^3$$

relative to the ordered bases

$$A_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{for } R^{4}$$

and
$$B_1 = 1 + x$$
, $B_2 = 1 - x$, $B_3 = 1 - x^2$, $B_4 = 1 + x^3$ for $P_3(R)$ where $P_3(R)$ is

the set of all polynomials of degree less or equal to 3 with real coefficients. What is the rank of T? Give your reason. ($15\,\%$)

- 3. Let A be a real n by n upper or lower triangular matrix satisfying AA' = A'A, where A' is the transpose of A. Show that A is a diagonal matrix. (10%)
- 4. Let $w \in R^n$ with ww' = 1. If A = I 2ww', show that A is symmetric and orthogonal. (10%)
- 5. Let V be a finite dimensional inner product space and W be a linear subspace of V. Show that $V = W + W^{\perp}$. (15%)
- 6. Let $T: V \to W$ be any linear transformation and assume that Ker(T) and Im(T) are both finite dimensional (20%)
 - a) Show that V is also finite dimensional and dim(V)= dim(Ker(T)) + dim(Im(T))
 - b) If V is the space of all n by n real matrices, W = R and T(A) = trace(A). Show that $\dim(Ker(T)) = n^2 1$
- 7. Let A be a real n by n matrix and b be a real n by 1 vector. Show that Ax = b has a solution if and only if ab = 0 for all 1 by n vectors a such that aA = 0. (15%)