淡江大學八十九學年度碩士班招生考試試題

系別:數學學系

科目:線性代數

本試題共 [

Answer all questions. Show all work.

1. Find
$$A^{-1}$$
 if $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 2 & 3 & -1 \end{pmatrix}$. (10%)

2. Let
$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
.

- (a) Find the eigenvalues of A.
- (b) Find a matrix P such that $P^{-1}AP$ is a diagonal matrix. (18%)
- 3. Let W and U be subspaces of a vector space V, and let $W \cap U = \{o\}$. Let $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ be a basis for W, and let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ be a basis for U. Prove that, if each vector \mathbf{v} in V is expressible in the form $\mathbf{v} = \mathbf{w} + \mathbf{u}$ for $\mathbf{w} \in W$ and $\mathbf{u} \in U$, then

$$\{\mathbf{w}_1,\ldots,\mathbf{w}_k,\mathbf{u}_1,\ldots,\mathbf{u}_m\}$$

is a basis for V. (10%)

- 4. If A is a nonsingular symmetric matrix, show that A^{-1} is symmetric. (10%)
- 5. Let V and V' be vector spaces and let $T:V\to V'$ be a linear transformation. Prove that T is one-to-one $\Leftrightarrow Ker(T)=0$. (12%)
- 6. Let V and W be finite dimensional inner product spaces with $\dim V \leq \dim W$. Show that there exists an isometric embedding $T: V \to W$. (10%)
- 7. Suppose $T: V \to V$ is a projection, i.e., $T^2 = T$. Show that the only eigenvalues of T are 0 and 1. (10%)
- 8. Let A be an $n \times n$ matrix such that $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbf{R}^n . Show that A is an orthogonal matrix. (10%)
- 9. Find the rank of

$$A = \begin{pmatrix} 1 & -1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 2 & 0 \\ -1 & 2 & 1 & 1 & 3 \\ 3 & -7 & 8 & 9 & 13 \\ 1 & 5 & -8 & -5 & -12 \end{pmatrix}$$