淡江大學八十七學年度碩士班入學考試試題

系别: 數學系 科目: 線性代數

第一员本試題共2頁

- 1. Let A be an $m \times n$ matrix over real numbers R.
- (a) (5 points) Prove or disprove: AX = 0 has a non-trivial solution implies that $A^tX = 0$ has a non-trivial solution.
- (b) (5 points) Prove or disprove: AX = 0 has a non-trivial solution if and only if rankA < n.
 - (c) (5 points) Prove or disprove: AX = 0 if and only if $A^t AX = 0$
- 2. Let V be the vector space of polynomials over the complex numbers C which are of degree ≤ 3 . Let $T:V \longrightarrow V$ be the linear transformation defined by T(f) = f + xf''.
- (a) (5 points) Find the matrix A which represents T with respect to the basis $\{1, x, x^2, x^3\}$.
 - (b) (5 points) Find the Jordan form for A.
- (c) (10 points) Find a basis in V such that the matrix representation of T is the Jordan form found in (b).
- 3. Let V be the space of $n \times 1$ matrices over field \mathbf{F} . $D: V^2 \longrightarrow \mathbf{F}$ is a bilinear form satisfying $D(\alpha, \alpha) = 0$ for all $\alpha \in V$.
- (a) (5 points) Show that there is a constant c such that $D(\alpha, \beta) = c \det(A)$ where A is the matrix with column vectors α, β .
- (b) (5 points) Let W be the space of bilinear forms on V. Determine diamnsion of W.
- 4. Let V be a finite dimensional inner product space over complex number C. Let T be a linear operator on V and T^* be its adjoint operator.
- (a) (5 points) Let \mathcal{B} be an orthonormal basis for V and A be the matrix representation of T with respect to \mathcal{B} . Show that the matrix representation of T^* with respect to \mathcal{B} is A^* .
 - (b) (5 points) Show that $range(T^*) = ker(T)^{\perp}$.
- 5. Let V be a finite dimensional inner product space over the complex numbers C with inner product denoted by $\langle \ , \ \rangle$ and let T be a linear operator on V.
- (a) (10 points) Show that T is self-adjoint if and only if $\langle T(\alpha), \alpha \rangle$ is real. Deduce that all characteristic values for T are real.
- (b) (5 points) Show that if T is normal, then characteristic vectors corresponding to distinct characteristic values are orthogonal.

淡江大學八十七學年度碩士班入學考試試題

系别: 數學系

科目: 線性代數

第二頁

本試題共 之 頁

6. Let

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

- (a) (5 points) Define $\langle X,Y\rangle=Y^tAX$. Show that this defines an inner product on the space V of 3×1 matrices over real numbers ${\bf R}$ and write the explicit fromula for this inner product.
- (b) (5 points) Find a real orthogonal matrix P such that P^tAP is a diagonal matrix D.
- (c) (5 points) Give explicitly an inner product preserving isomorphism between the space V with the above defined inner product and \mathbf{R}^3 with the standard inner product.
- 7. Let V be a vector space of dimension n over a field \mathbf{F} . Let E be a projection of V onto a subspace W of dimension m.
- (a) (5 points) Show that E is diagonalizable. Find all characteristic values of E indicating its multiplicity.
- (b) (5 points) If V is an inner product space and E is an orthogonal projection, show that E is self-adjoint.
- (c) (5 points) If $\mathcal{B} = \{\alpha_1, \dots, \alpha_m\}$ be an orthonormal basis of W and β be a vector in V. Find explicitly the point in W which is closest to β .