系別:數學學系

科目:代 數 學

准帶項目請打「V」

簡單型計算機

本試題共 ↓

Answer all questions. Show all work.

- 1. Let $\phi: G \to G'$ be a group homomorphism. Let |G| and $|\phi(G)|$ be the order of |G| and order of $|\phi(G)|$ respectively. If |G| is finite, show that $|\phi(G)|$ is finite and is a divisor of |G|. (10%)
- 2. Let $\phi: G \to H$ be a group homomorphism and let $K = \{a \in G | \phi(a) = e_H\}$ where e_H is the identity element of H. Prove that K is a normal subgroup of G. (10%)
- 3. Let $\phi: \mathbb{Z}_{18} \to \mathbb{Z}_{12}$ be the homomorphism where $\phi(1) = 10$
 - (a) Find the kernel of ϕ .
 - (b) Lists the cosets in $\mathbb{Z}_{18}/ker(\phi)$, showing the elements in each coset.
 - (c) Find the group $\phi(\mathbf{Z}_{18})$. (15%)
- 4. Let $\mathbf R$ be the field of real numbers.
 - (a) Prove that the set $T = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in \mathbf{R} \}$ is a subring of M(R) where M(R) is the ring of 2×2 matrices with entries in \mathbf{R} .
 - (b) Prove that the set $I = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} | b \in \mathbf{R} \}$ is an ideal in the ring T.
 - (c) Show that every coset in T/I can be written in the form $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + T$.

 (18%)
- 5. Let Q be the field of rational numbers.
 - (a) Prove that $\mathbf{Q}(\sqrt{2}) = \{r + s\sqrt{2} | r, s \in \mathbf{Q} \}$ is a subfield of \mathbf{R} .
 - (b) Show that $\mathbf{Q}(\sqrt{2})$ is isomorphic to $\mathbf{Q}[x]/(x^2-2)$. (15%)
- 6. Let C be the field of complex numbers. Prove that the function $f: C \to C$ which is defined by f(a+bi) = a-bi for any $a+bi \in C$ is an isomorphism. (12%)
- 7. Let be the ring of integers. If p is prime integer and $M = \{(pa, b) | a, b \in \mathbb{Z}\}$, prove that M is a maximi ideal in $\mathbb{Z} \times \mathbb{Z}$. (10%)
- 8. Show that $x^2 3$ and $x^2 2x 2$ are irreducible in $\mathbb{Q}[x]$ and find their splitting fields. (10%)