淡江大學九十四學年度碩士班招生考試試題

系別:數學學系

科目:代數學

准帶項目請打「V」 簡單型計算機 本試題共 / 頁

- 1. (10 points) Let \mathbb{F} be a field. Show that every ideal in $\mathbb{F}[x]$ is principle.
- 2. (10 points) Find an irreducible polynomial of degree 3 over \mathbb{Z}_3 and construct a field of 27 elements.
- 3. (10 points) Show that a group of order 2005 is cyclic.
- 4. (10 points) Let $\varphi:G\longrightarrow G'$ be a group homomorphism. Suppose that |G|=24, |G'|=30 and φ is not the trivial homomorphism. Find possible orders of image of φ .
- 5. (10 points) List all abelian groups of order 360.
- 6. (10 points) Let $\varphi : \mathbb{F} \longrightarrow \mathbb{F}'$ be a homomorphism between two fields. Show that if φ is not the zero homomorphism, then φ is one to one.
- 7. (15 points)

Let $R = \mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z} \}.$

- (a) Determine whether $3 + 2\sqrt{-1}$, $4 + 3\sqrt{-1}$ are primes.
- (b) Let p be a prime integer in \mathbb{Z} . Show that p is a prime in R if and only if p can not be written as $a^2 + b^2$ for any integer $a, b \in \mathbb{Z}$.
 - (c) Let $I \subset R$ be an ideal. Show that R/I is finite.
- 8. (25 points)

Let ζ be a primitive 7-th root of unity.

- (a) Find order of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ and write explicitly its elements.
- (b) Find an intermediate field K of $\mathbb{Q}(\zeta)$ such that $[\mathbb{Q}(\zeta):K]=2$.
- (c) Find the splitting field of $x^7 2$ and find its degree of extension over \mathbb{Q} .