淡江大學九十二學年度碩士班招生考試試題

系別:數學學系

科目:代 數 學

本試題共 1 頁

- 1. Let S be any subset of a group G. Show that $H_S = \{x \in G | xs = sx \text{ for all } s \in S\}$ is a subgroup of G. (10%)
- 2. Show that a group homomorphism $f:G\to G'$ is a one-to-one map if and only if $Ker(f)=\{e\}$, where e is the identity of G. (10%)
- 3. Let $f: G \to G'$ be a group homomorphism, and let N' be a normal subgroup of G'. Show that $f^{-1}(N')$ is normal subgroup of G. (10%)
- 4. Let $f: R \to R'$ be a ring homomorphism and let N be an ideal of R. Show that f(N) is an ideal of f(R). (10%)
- 5. Show that (x) is a maximal ideal of $\mathbf{Q}[x]$, where $\mathbf{Q}[x]$ is the ring of polynomials over the field of rational numbers \mathbf{Q} . (10%)
- 6. Let $n \in \mathbb{Z}^+$ be square free, that is , not divisible be the square of any prime integer. Let $\mathbb{Z}[\sqrt{-n}] = \{a + ib\sqrt{n} \ a, b \in \mathbb{Z}\}.$
 - (a) Show that the norm N, defined by $N\alpha = a^2 + nb^2$ for $\alpha = a + ib\sqrt{n}$, is a multiplicative norm on $\mathbb{Z}[\sqrt{-n}]$.
 - (b) Show that $N\alpha = 1$ if and only if α is a unit of $\mathbb{Z}[\sqrt{-n}]$.

 (20%)
- 7. Let E be a finite extension of a field F, and let $p(x) \in F[x]$ be irreducible over F and have a degree that is not a divisor of [E:F]. Show that p(x) has no zero in E. (10%)
- 8. Show that the cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \cdots + x + 1$$

is irreducible over Q for every prime p. (10%)

- 9. (a) Describe the elements of the Galois group $Gal(\mathbf{Q}(\sqrt{2},\sqrt{3})/\mathbf{Q})$.
 - (b) To what group is $Gal(\mathbf{Q}(\sqrt{2},\sqrt{3})/\mathbf{Q})$ isomorphic? (10%)