淡江大學九十學年度碩士班招生考試試題

系別:數學學系

	代 數	學
准帶項目請打「〇」否則打「× 」		
計算機	字典	
X	X	

本試題井

頁

- 1. Let G be a cyclic group of order n, and let d be a positive divisor of n.
- (a) Prove that G has a unique subgroup H of order d. (5%)
- (b) Prove that G has a unique subgroup K which is isomorphic the quotient group G/H. (10%)
- 2. Let K be a Sylow p-subgroup of G and N a normal subgroup of G. Suppose that K is normal in N. Show that K is also normal in N. (10%)
- 3. Let R be a commutative ring with identity and

$$SL_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in R, ad - bc = 1 \right\},$$

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(R) : c = 0 \right\}.$$

- (a) Show that $SL_2(R)$ is a group under usual matrix multiplication. (5%)
- (b) Prove or disprove that B is a subgroup of $SL_2(R)$. (5%)
- (c) Prove or disprove that B is a normal subgroup of $SL_2(R)$. (5%)
- 4. Let I, J be ideals of R, and let $I + J = \{a + b : a \in I, b \in J\}$.
- (a) Prove that both $I \cap J$ and I + J are also ideals of R. (8%)
- (b) Consider $R = \mathbb{Z}$, the ring of integers, and I, J ideals generated by integers m, n respectively. Find generators for the ideals $I \cap J$ and I + J. (7%)
- 5. Prive that the ring $\mathbb{Z}[\sqrt{-13}] = \{a + b\sqrt{-13} : a, b \in \mathbb{Z}\}$ is not a principal ideal domain. (Hint: consider the element $1 + \sqrt{-13}$.) (10%)
- 6. Prove that each polynomial is irreducible over the rational numbers. (15%)
- (a) $x^3 + 2x + 1$, (b) $x^6 6x^5 + 4x^3 + 7$, (c) $16x^3 + 3x^2 + 5x + 10$.

(Hint: Use the root test, Eisenatein's criterion, or consider modulo a suitable prime p.)

- 7. Let K be the splitting field of the polynomial $x^4 + 2x^3 + 2x 1$ over \mathbb{Q} .
- (a) Determine the extension degree $[K:\mathbb{Q}]$. (8%)
- (b) Find the Galois group of K over \mathbb{Q} . (6%)
- (c) Find all intermediate fields between \mathbb{Q} and K. (6%)