Answer all questions. Show all work.

- 1. Let $f: G \to H$ be a surjective homomorphism of groups with kernel K and let M be a subgroup of H.
 - (a) Prove that there is a subgroup N of G such that $K \subseteq N \subseteq G$ and N/K is isomorphic to M.
 - (b) If M is normal in H, prove that N is normal in G and G/N is isomorphic to H/M.(15%)

2. Let M and N be normal subgroups of a group G with $M \cap N = \langle e \rangle$. Prove that G is isomorphic to a subgroup of $G/M \times G/N$. (11%)

- 3. Let K be a Sylow p-subgroup of G and N a normal subgroup of G. If K is a normal subgroup of N, prove that K is normal in G. (11%)
- 4. Show that the principal ideal (x) in $\mathbb{Z}[x]$ is prime but not maximal. (14%)
- 5. Show that $x^2 3$ and $x^2 2x 2$ are irreducible in Q[x]. Find their splitting fields. (11%)
- 6. (a) Let P be the ideal $\{2a + (1 + \sqrt{-5})b | a, b \in \mathbb{Z}[\sqrt{-5}]\}$ in $\mathbb{Z}[\sqrt{-5}]$. Prove that $r + s\sqrt{-5} \in P$ if and only if $r \equiv s \pmod{2}$.
 - (b) Show that P^2 is the principal ideal (2). (15%)
- 7. (a) Let $\omega = \frac{-1+\sqrt{3}i}{2}$ be a complex root of 1. Find the minimal polynomial p(x) of ω over Q and show that ω^2 is also a root of p(x).
 - (b) Find the Galois group $Gal_{\mathbf{Q}}\mathbf{Q}(\omega)$. (11%)
- 8. (a) Prove that the set S of matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $a, b, c \in \mathbb{R}$ R is a subring of $M(\mathbb{R})$, where $M(\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{R} \}$.
 - (b) Prove that the set I of matrices of the form $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ with $b \in \mathbb{R}$ is an ideal in the ring S.
 - (c) Show that there are infinitely many distinct cosets in S/I, one for each pair in $\mathbb{R} \times \mathbb{R}$.