淡江大學 101 學年度碩士班招生考試試題

系別: 化學學系

科目:物理 化學

考試日期:2月26日(星期日) 第4節

本試題共 9 大題, 2 頁

- 1. (a) Propose a mechanism for the reaction $2NO_2 + F_2 \rightarrow 2NO_2F$. The reaction is found to be second-order; its rate equation is $-\frac{1}{2}\frac{d[NO_2]}{dt} = k_2[NO_2][F_2]$
 - (b) For a certain first-order reaction $A \rightarrow B + C$, the initial concentration of A was 0.35 M. After 30 seconds, the concentration is 0.31 M. Calculated the rate constant.
 - (c) Integrate the rate equation $-\frac{dC}{dt} = kC^{1/2}$.

15%

- 2. Consider the following mechanism $A + A \xrightarrow[k_2]{k_2} A^* + A$ and $A^* \xrightarrow[k_2]{k_1}$ products used to describe the decomposition of a gaseous molecule. (a) Write the differential rate equations for $-\frac{dC_A}{dt}$ and $\frac{dC_{A^*}}{dt}$ and assuming a steady state approximate for C_{A^*} , write $-\frac{dC_A}{dt}$ in terms of C_A and rate constant. (b) Under what condition is this a pseudo-first-order reaction? (c) A pseudo-second-order reaction?
- 3. For an ideal gas having $C_p = \frac{7}{2}R$, calculate the entropy changes of 5 mole of the gas when it is heated from room temperature (298.2 K) to 500 K (a) at constant volume and (b) at constant pressure.
- 4. (a) Verify $|\Psi(r.t)|^2 = |\psi(r)|^2$, b. Describe the time-dependent and time-independent Schrödinger equation.
- 5. Show that the frequency of the n=3 to 2 for the one particle in a 1-D box transition is 5/3 times the frequency of the 2 to 1 transition.
- 6. Describe Frank-Condon principle! How to apply it in the electronic device and DSSC? 10%

淡江大學 101 學年度碩士班招生考試試題

系別: 化學學系

科目:物理 化學

考試日期:2月26日(星期日) 第4節

本試題共 9 大題, 2 頁

- 7. ϕ_1 and ϕ_2 are normalized and orthogonal to one another $\Psi_1 = \frac{1}{\sqrt{2}}(\phi_1 + \phi_2)$ and $\Psi_2 = \frac{1}{i\sqrt{2}}(\phi_1 \phi_2)$, showing that Ψ_1 and Ψ_2 are also normalized and orthogonal to one another. 10%
- 8. For each of the following processes, state which of ΔU , ΔH , ΔS , ΔA and ΔG must be zero.(a) Ice melted at 0°C and 1 atm. (b) A nonideal gas undergoes a Carnot cycle. (c) Hydrogen is burned in an adiabatic calorimeter of fixed volume.
- 9. (a) Evaluate the $\langle p_x \rangle$ for a particle in a 1-D box. (b) Please give the \hat{H} for H atom. 10%