淡江大學 99 學年度碩士班招生考試試題

系別:化學學系(化學組)

科目:物理化學

准带:	項目請	17 LA		
V	計	算者	幾	
本試題力	+ /	頁,	5	大

- 1. a. Show that $\langle p \rangle = 0$ for all state of a particle in a 1-D box with length a.
 - b. What are the degeneracies of the first three energy levels of a particle in a 3-D box with a = b = 1.5c.
- 2. a. Determine the term symbol of the ground state electron configuration of B₂.
 - b. Show that $\psi_{sp} = \frac{1}{\sqrt{2}}(2s \pm 2p_z)$ is normalized.
- 3. a. Integrate the rate equation $-\frac{dC}{dt} = kC^{1/2}$.
 - b. What are the units of k.
 - c. Derive the expression for $t_{1/2}$ in terms of k and C_0 .
- 4. Determine the normal modes of vibration for C₂₀ molecule and indicate the IR active and Raman active. (Hint: the C₂₀ has I_h symmetry with the carbon is located in the center of equivalent triangle of icosahedron)
- 5. a. Calculate the entropy change if 2.0 mol of monatomic gas $(C_{p,m} = \frac{5}{2}R)$ is

heated from 300K to 400K and the pressure increases from 2.5 atm to 3.5 atm.

b. Describe a Carnot engine being one mole of ideal gas, write the expression for the work done in each step.

每題二十分

11. The Icosahedral Groups*

I_h	E	12C ₅	12C ₅ ²	20C ₃	15C ₂	i i	12.510	$12S_{10}^{3}$	20S ₆	15σ		
Ao	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
T_{1g}	3	$\frac{1}{1}(1+\sqrt{5})$	$\frac{1}{2}(1-\sqrt{5})$	0	-1	3	$\frac{1}{2}(1-\sqrt{5})$	$\frac{1}{2}(1+\sqrt{5})$	0	-1	(R_x, R_y, R_z)	
	3	$\frac{1}{2}(1-\sqrt{5})$	$\frac{1}{2}(1+\sqrt{5})$	0	1	3	$\frac{1}{2}(1+\sqrt{5})$	$\frac{1}{2}(1-\sqrt{5})$	0	1		
G	4	-1	-1	1	0	. 4	-1	1	1	0		
G_{σ} H_{σ}	5	. 0	0	-1	1	5	0	0	-1	1		$(2z^2 - x^2 - y^2, x^2 - y^2,$
										15		xy, yz, zx)
A_u	1	1	1	1	1	-1	-1	-1	-1	-1		
T_{1u}	3	$\frac{1}{2}(1+\sqrt{5})$	$\frac{1}{3}(1-\sqrt{5})$	0	-1	-3	$-\frac{1}{2}(1-\sqrt{5})$	$-\frac{1}{2}(1+\sqrt{5})$. 0	1	(x, y, z)	
T_{2u}	3	$\frac{1}{2}(1-\sqrt{5})$	$\frac{1}{2}(1+\sqrt{5})$	0	-1	-3	$-\frac{1}{2}(1+\sqrt{5})$	$-\frac{1}{2}(1-\sqrt{5})$	0	1		
G_u	4	-1	-1	1	0	-4	1	1	-1	0		
H_u	5	0	0	-1	1	-5	0	0	1	-1	l	l

"For the pure rotation group I, the outlined section in the upper left is the character table; the g subscripts should, of course, be dropped and (x, y, z) assigned to the T₁ representation.