淡江大學 99 學年度碩士班招生考試試題 系別:化學學系(化學組) 科目:物理化學 | 准带: | 項目請 | 17 LA | | | |------|-----|-------|---|---| | V | 計 | 算者 | 幾 | | | 本試題力 | + / | 頁, | 5 | 大 | - 1. a. Show that $\langle p \rangle = 0$ for all state of a particle in a 1-D box with length a. - b. What are the degeneracies of the first three energy levels of a particle in a 3-D box with a = b = 1.5c. - 2. a. Determine the term symbol of the ground state electron configuration of B₂. - b. Show that $\psi_{sp} = \frac{1}{\sqrt{2}}(2s \pm 2p_z)$ is normalized. - 3. a. Integrate the rate equation $-\frac{dC}{dt} = kC^{1/2}$. - b. What are the units of k. - c. Derive the expression for $t_{1/2}$ in terms of k and C_0 . - 4. Determine the normal modes of vibration for C₂₀ molecule and indicate the IR active and Raman active. (Hint: the C₂₀ has I_h symmetry with the carbon is located in the center of equivalent triangle of icosahedron) - 5. a. Calculate the entropy change if 2.0 mol of monatomic gas $(C_{p,m} = \frac{5}{2}R)$ is heated from 300K to 400K and the pressure increases from 2.5 atm to 3.5 atm. b. Describe a Carnot engine being one mole of ideal gas, write the expression for the work done in each step. ## 每題二十分 ## 11. The Icosahedral Groups* | I_h | E | 12C ₅ | 12C ₅ ² | 20C ₃ | 15C ₂ | i i | 12.510 | $12S_{10}^{3}$ | 20S ₆ | 15σ | | | |---------------------------|---|---------------------------|-------------------------------|------------------|------------------|-----|----------------------------|----------------------------|------------------|-----|-------------------|----------------------------------| | Ao | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2 + z^2$ | | T_{1g} | 3 | $\frac{1}{1}(1+\sqrt{5})$ | $\frac{1}{2}(1-\sqrt{5})$ | 0 | -1 | 3 | $\frac{1}{2}(1-\sqrt{5})$ | $\frac{1}{2}(1+\sqrt{5})$ | 0 | -1 | (R_x, R_y, R_z) | | | | 3 | $\frac{1}{2}(1-\sqrt{5})$ | $\frac{1}{2}(1+\sqrt{5})$ | 0 | 1 | 3 | $\frac{1}{2}(1+\sqrt{5})$ | $\frac{1}{2}(1-\sqrt{5})$ | 0 | 1 | | | | G | 4 | -1 | -1 | 1 | 0 | . 4 | -1 | 1 | 1 | 0 | | | | G_{σ} H_{σ} | 5 | . 0 | 0 | -1 | 1 | 5 | 0 | 0 | -1 | 1 | | $(2z^2 - x^2 - y^2, x^2 - y^2,$ | | | | | | | | | | | | 15 | | xy, yz, zx) | | A_u | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | | | T_{1u} | 3 | $\frac{1}{2}(1+\sqrt{5})$ | $\frac{1}{3}(1-\sqrt{5})$ | 0 | -1 | -3 | $-\frac{1}{2}(1-\sqrt{5})$ | $-\frac{1}{2}(1+\sqrt{5})$ | . 0 | 1 | (x, y, z) | | | T_{2u} | 3 | $\frac{1}{2}(1-\sqrt{5})$ | $\frac{1}{2}(1+\sqrt{5})$ | 0 | -1 | -3 | $-\frac{1}{2}(1+\sqrt{5})$ | $-\frac{1}{2}(1-\sqrt{5})$ | 0 | 1 | | | | G_u | 4 | -1 | -1 | 1 | 0 | -4 | 1 | 1 | -1 | 0 | | | | H_u | 5 | 0 | 0 | -1 | 1 | -5 | 0 | 0 | 1 | -1 | l | l | "For the pure rotation group I, the outlined section in the upper left is the character table; the g subscripts should, of course, be dropped and (x, y, z) assigned to the T₁ representation.